Group representations and algebraic information theory
Izvestiya. Mathematics , Tome 59 (1995) no. 6, pp. 1123-1147.

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest a new way of developing the representation theory of symmetric groups. The method is based on information theory. This approach enables us to obtain a number of new results in information theory including a new effective algorithm for solving Littlewood–Richardson problem.
@article{IM2_1995_59_6_a1,
     author = {V. D. Goppa},
     title = {Group representations and algebraic information theory},
     journal = {Izvestiya. Mathematics },
     pages = {1123--1147},
     publisher = {mathdoc},
     volume = {59},
     number = {6},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_6_a1/}
}
TY  - JOUR
AU  - V. D. Goppa
TI  - Group representations and algebraic information theory
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 1123
EP  - 1147
VL  - 59
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_59_6_a1/
LA  - en
ID  - IM2_1995_59_6_a1
ER  - 
%0 Journal Article
%A V. D. Goppa
%T Group representations and algebraic information theory
%J Izvestiya. Mathematics 
%D 1995
%P 1123-1147
%V 59
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_59_6_a1/
%G en
%F IM2_1995_59_6_a1
V. D. Goppa. Group representations and algebraic information theory. Izvestiya. Mathematics , Tome 59 (1995) no. 6, pp. 1123-1147. http://geodesic.mathdoc.fr/item/IM2_1995_59_6_a1/

[1] Van-der-Varden V. L., Sovremennaya algebra, ONTI, M., 1937

[2] Specht W., “Die irreduziblen Darstellungen der Symmetrischen Gruppe”, Math. Z., 39 (1935), 696–711 | DOI | MR | Zbl

[3] Robinson D. B., Representation theory of the Symmetric Group, Edinburg, 1961

[4] Dzheims G., Teoriya predstavlenii simmetricheskikh grupp, Mir, M., 1982 | MR

[5] James G., Kerber A., The Representation Theory of the Symmetric Group. Encyclopedia of Mathematics, Addison Wesly, 1981 | MR

[6] Goppa V. D., “Algebraicheskii kanal Frobeniusa–Yunga”, Dokl. RAN, 333:3 (1993), 288–289 | MR | Zbl

[7] Goppa V. D., Vvedenie v algebraicheskuyu teoriyu informatsii, Nauka, M., 1995

[8] Kertis Ch., Rainer I., Teoriya predstavlenii konechnykh grupp i assotsiativnykh algebr, Nauka, M., 1969 | MR

[9] Carter R. W., Lusztig G., “On the Modular Representations of the General Linear and Symmetric Groups”, Math. Z., 136 (1974), 193–242 | DOI | MR | Zbl