Sets of regular growth of functions in a~half-plane.~II
Izvestiya. Mathematics , Tome 59 (1995) no. 5, pp. 983-1006

Voir la notice de l'article provenant de la source Math-Net.Ru

A multiple interpolation problem is solved in the class of functions of completely regular growth in the closed upper half-plane which have a prescribed indicator and relative to a given proximal order, as well as in the class of functions analytic in the half-plane which have an indicator that does not exceed a prescribed one.
@article{IM2_1995_59_5_a7,
     author = {K. G. Malyutin},
     title = {Sets of regular growth of functions in {a~half-plane.~II}},
     journal = {Izvestiya. Mathematics },
     pages = {983--1006},
     publisher = {mathdoc},
     volume = {59},
     number = {5},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_5_a7/}
}
TY  - JOUR
AU  - K. G. Malyutin
TI  - Sets of regular growth of functions in a~half-plane.~II
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 983
EP  - 1006
VL  - 59
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_59_5_a7/
LA  - en
ID  - IM2_1995_59_5_a7
ER  - 
%0 Journal Article
%A K. G. Malyutin
%T Sets of regular growth of functions in a~half-plane.~II
%J Izvestiya. Mathematics 
%D 1995
%P 983-1006
%V 59
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_59_5_a7/
%G en
%F IM2_1995_59_5_a7
K. G. Malyutin. Sets of regular growth of functions in a~half-plane.~II. Izvestiya. Mathematics , Tome 59 (1995) no. 5, pp. 983-1006. http://geodesic.mathdoc.fr/item/IM2_1995_59_5_a7/