Analogues of Kloosterman sums
Izvestiya. Mathematics , Tome 59 (1995) no. 5, pp. 971-981.

Voir la notice de l'article provenant de la source Math-Net.Ru

Non-trivial estimates are obtained for the upper bound of absolute values of analogues of Kloosterman sums in which the number of terms is much less that the modulus.
@article{IM2_1995_59_5_a6,
     author = {A. A. Karatsuba},
     title = {Analogues of {Kloosterman} sums},
     journal = {Izvestiya. Mathematics },
     pages = {971--981},
     publisher = {mathdoc},
     volume = {59},
     number = {5},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_5_a6/}
}
TY  - JOUR
AU  - A. A. Karatsuba
TI  - Analogues of Kloosterman sums
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 971
EP  - 981
VL  - 59
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_59_5_a6/
LA  - en
ID  - IM2_1995_59_5_a6
ER  - 
%0 Journal Article
%A A. A. Karatsuba
%T Analogues of Kloosterman sums
%J Izvestiya. Mathematics 
%D 1995
%P 971-981
%V 59
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_59_5_a6/
%G en
%F IM2_1995_59_5_a6
A. A. Karatsuba. Analogues of Kloosterman sums. Izvestiya. Mathematics , Tome 59 (1995) no. 5, pp. 971-981. http://geodesic.mathdoc.fr/item/IM2_1995_59_5_a6/

[1] Khooli K., Primeneniya metodov resheta v teorii chisel, Nauka, M., 1987 | MR

[2] Karatsuba A. A., “Raspredelenie obratnykh velichin v koltse vychetov po zadannomu modulyu”, Dokl. RAN, 333:2 (1993), 138–139 | MR | Zbl

[3] Karatsuba A. A., “Drobnye doli spetsialnogo vida funktsii”, Izv. RAN. Ser. matem., 59:4 (1995), 61–80 | MR | Zbl

[4] Mardzhanishvili K. K., “Otsenka odnoi arifmeticheskoi summy”, Dokl. AN SSSR, 22:7 (1939), 391–393

[5] Karatsuba A. A., “Ravnomernaya otsenka ostatochnogo chlena v probleme delitelei Dirikhle”, Izv. AN SSSR. Ser. matem., 36:3 (1972), 475–483 | Zbl

[6] Vinogradov I. M., Metod trigonometricheskikh summ v teorii chisel, 2-e izd., Nauka, M., 1980 | MR