Analogues of Kloosterman sums
Izvestiya. Mathematics, Tome 59 (1995) no. 5, pp. 971-981
Cet article a éte moissonné depuis la source Math-Net.Ru
Non-trivial estimates are obtained for the upper bound of absolute values of analogues of Kloosterman sums in which the number of terms is much less that the modulus.
@article{IM2_1995_59_5_a6,
author = {A. A. Karatsuba},
title = {Analogues of {Kloosterman} sums},
journal = {Izvestiya. Mathematics},
pages = {971--981},
year = {1995},
volume = {59},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_5_a6/}
}
A. A. Karatsuba. Analogues of Kloosterman sums. Izvestiya. Mathematics, Tome 59 (1995) no. 5, pp. 971-981. http://geodesic.mathdoc.fr/item/IM2_1995_59_5_a6/
[1] Khooli K., Primeneniya metodov resheta v teorii chisel, Nauka, M., 1987 | MR
[2] Karatsuba A. A., “Raspredelenie obratnykh velichin v koltse vychetov po zadannomu modulyu”, Dokl. RAN, 333:2 (1993), 138–139 | MR | Zbl
[3] Karatsuba A. A., “Drobnye doli spetsialnogo vida funktsii”, Izv. RAN. Ser. matem., 59:4 (1995), 61–80 | MR | Zbl
[4] Mardzhanishvili K. K., “Otsenka odnoi arifmeticheskoi summy”, Dokl. AN SSSR, 22:7 (1939), 391–393
[5] Karatsuba A. A., “Ravnomernaya otsenka ostatochnogo chlena v probleme delitelei Dirikhle”, Izv. AN SSSR. Ser. matem., 36:3 (1972), 475–483 | Zbl
[6] Vinogradov I. M., Metod trigonometricheskikh summ v teorii chisel, 2-e izd., Nauka, M., 1980 | MR