On the structure of residue currents and functionals orthogonal to ideals in the space of holomorphic functions
Izvestiya. Mathematics , Tome 59 (1995) no. 5, pp. 1083-1102.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article investigates residues associated with holomorphic mappings $f=(f_1,\dots,f_p)\colon X\to\mathbb C^p$ defined on a complex space $X$. By means of a new definition of principal value of a residue, it sharpens results of Coleff, Herrera, and Dolbeault concerning the structure of residues. It establishes a connection between residues and functionals in $\mathcal O'(X)$ orthogonal to the ideal $\langle f_1,\dots,f_p\rangle\subset\mathcal O(X)$. Using these results on residues and functionals, a formula is derived for the exponential representation for elements of invariant subspaces and for the solution of homogeneous convolution equations.
@article{IM2_1995_59_5_a11,
     author = {V. M. Trutnev and A. K. Tsikh},
     title = {On the structure of residue currents and functionals orthogonal to ideals in the space of holomorphic functions},
     journal = {Izvestiya. Mathematics },
     pages = {1083--1102},
     publisher = {mathdoc},
     volume = {59},
     number = {5},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_5_a11/}
}
TY  - JOUR
AU  - V. M. Trutnev
AU  - A. K. Tsikh
TI  - On the structure of residue currents and functionals orthogonal to ideals in the space of holomorphic functions
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 1083
EP  - 1102
VL  - 59
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_59_5_a11/
LA  - en
ID  - IM2_1995_59_5_a11
ER  - 
%0 Journal Article
%A V. M. Trutnev
%A A. K. Tsikh
%T On the structure of residue currents and functionals orthogonal to ideals in the space of holomorphic functions
%J Izvestiya. Mathematics 
%D 1995
%P 1083-1102
%V 59
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_59_5_a11/
%G en
%F IM2_1995_59_5_a11
V. M. Trutnev; A. K. Tsikh. On the structure of residue currents and functionals orthogonal to ideals in the space of holomorphic functions. Izvestiya. Mathematics , Tome 59 (1995) no. 5, pp. 1083-1102. http://geodesic.mathdoc.fr/item/IM2_1995_59_5_a11/

[1] Tsikh A. K., Mnogomernye vychety i ikh primenenie, Nauka, Novosibirsk, 1988 | Zbl

[2] Coleff N. R., Herrera M. E., “Les courants résiduals associés à une forme méromorphe”, Lecture Notes in Math., 633, Springer-Verlag, Berlin–New York, 1978 | MR | Zbl

[3] Dolbeault P., “On the structure of residual currents”, Several complex variables (Stockholm, 1987/1988), Math. Notes, 38, Prinston Univ. Press, 1993, 258–273 | MR | Zbl

[4] Passare M., Tsikh A., Defining the residue current of a complete intersection, Preprint of Max-Planck-Institut für Mathematik, Bonn, 1994 | Zbl

[5] Passare M., “Residues, currents and their relation to ideals of holomorphic function”, Math. Scand., 62 (1988), 75–152 | MR | Zbl

[6] Berenstein C., Gay R., Vidras A., Yger A., “Residue Currents and Bezout Identities”, Progress in Math., 144, Birkhäuser Verlag, Basel–Boston–Berlin, 1993 | MR

[7] Rudin U., Funktsionalnyi analiz, Mir, M., 1975 | MR

[8] Dickenstein A., Sessa C., “Canonical representatives in moderate cohomology”, Inven. math., 80 (1985), 417–434 | DOI | MR | Zbl

[9] Chirka E. M., Kompleksnye analiticheskie mnozhestva, Nauka, M., 1985 | MR

[10] Tsikh A. K., Metody teorii mnogomernykh vychetov, Dis. ...d-ra fiz.-matem. nauk, IM SO AN SSSR, Novosibirsk, 1989

[11] Aizenberg L. A., Yuzhakov A. P., Integralnye predstavleniya i vychety v mnogomernom kompleksnom analize, Nauka, Novosibirsk, 1979

[12] Napalkov V. V., Uravneniya svertki v mnogomernykh prostranstvakh, Nauka, M., 1982 | MR

[13] Dickson D. G., “Convolution equation and harmonic analysis in spaces of entire functions”, Trans. Amer. Math. Soc., 184 (1973), 373–385 | DOI | MR

[14] Lang H., “On systems of convolutions with functions of exponential type”, Reports Dep. Math. Univ. Stockholm, 1980, no. 16, 1–7

[15] Lelon P., Gruman L., Tselye funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1989 | MR | Zbl

[16] Palamodov V. P., Lineinye differentsialnye operatory s postoyannymi koeffitsientami, Nauka, M., 1967 | MR

[17] Zeilberger D., “A new proof of the semilocal quotient structure theorem”, Amer. J. Math., 100 (1978), 1317–1332 | DOI | MR | Zbl

[18] Filippov V. N., “Spektralnyi sintez v nekotorykh prostranstvakh tselykh funktsii eksponentsialnogo tipa”, Matem. zametki, 30:4 (1981), 527–534 | MR | Zbl

[19] Frisch J., “Points de platitude d'un morphisme d'espaces analytiques complexes”, Invent. Math., 4 (1967), 118–138 | DOI | MR | Zbl

[20] Khermander L., Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, M., 1968 | MR

[21] Cartan H., “Idéaux et modules de fonctions analytiques de variables complexes”, Bull. Soc. Math. France, 78 (1950), 28–64 | MR

[22] Ganning R., Rossi Kh., Analiticheskie funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1969 | MR

[23] Martineau A., “Sur les fonctionnelles analytiques et la transformation de Fourier–Borel”, J. Anal. Math., 9 (1963), 1–164 | DOI | MR

[24] Berndtsson B., Passare M., “Integral Formulas and Explicit Version of the Fundamental Principle”, J. of Functional Analysis, 84:2 (1989), 358–372 | DOI | MR | Zbl

[25] Trutnev V. M., “Eksponentsialnoe predstavlenie reshenii uravnenii svertki v nekotorykh prostranstvakh tselykh funktsii v $\mathbb C ^n$”, Mnogomernyi kompleksnyi analiz, In-t fiziki SO AN SSSR, Krasnoyarsk, 1985, 186–191 | MR