Integral structures in algebraic tori
Izvestiya. Mathematics , Tome 59 (1995) no. 5, pp. 881-897.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result is the construction of a minimal integral model of an algebraic torus defined over a complete non-Archimedean extension of an algebraic number field. The structure of such models is studied. The main problem is the study of the model in the case of a ramified splitting field. Reductions of these models with respect to a simple module are described. Minimal models of tori over the ring of algebraic integers are constructed. The local volumes and class numbers of some models are calculated.
@article{IM2_1995_59_5_a0,
     author = {V. E. Voskresenskii and T. V. Fomina},
     title = {Integral structures in algebraic tori},
     journal = {Izvestiya. Mathematics },
     pages = {881--897},
     publisher = {mathdoc},
     volume = {59},
     number = {5},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_5_a0/}
}
TY  - JOUR
AU  - V. E. Voskresenskii
AU  - T. V. Fomina
TI  - Integral structures in algebraic tori
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 881
EP  - 897
VL  - 59
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_59_5_a0/
LA  - en
ID  - IM2_1995_59_5_a0
ER  - 
%0 Journal Article
%A V. E. Voskresenskii
%A T. V. Fomina
%T Integral structures in algebraic tori
%J Izvestiya. Mathematics 
%D 1995
%P 881-897
%V 59
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_59_5_a0/
%G en
%F IM2_1995_59_5_a0
V. E. Voskresenskii; T. V. Fomina. Integral structures in algebraic tori. Izvestiya. Mathematics , Tome 59 (1995) no. 5, pp. 881-897. http://geodesic.mathdoc.fr/item/IM2_1995_59_5_a0/

[1] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1985 | MR | Zbl

[2] Voskresenskii V. E., “Reduktsiya algebraicheskogo tora po prostomu modulyu”, Mezhdunarodnaya konferentsiya “Algebra i Analiz”. Tezisy dokladov, Ch. 1, Kazan, 1994, 26

[3] Serr Zh.-P., Algebraicheskie gruppy i polya klassov, Mir, M., 1968

[4] Fomina T. V., “Gruppa klassov normennoi giperpoverkhnosti”, Arifmetika i geometriya mnogoobrazii, Izd-vo Samarskogo un-ta, Samara, 1992, 140–146 | MR

[5] Fomina T. V., “Algebraicheskie tory nad lokalnymi polyami i ikh reduktsii”, Mezhdunarodnaya konferentsiya “Algebra i Analiz”. Tezisy dokladov, Ch. 1, Kazan, 1994, 98–99

[6] Katayama S., “Isogenous tori and the class number formulae”, J. Math. Kyoto Univ., 31 (1991), 679–694 | MR | Zbl

[7] Nart E., Xarles X., “Additive reduction of algebraic tori”, Arch. Math., 57 (1991), 460–466 | DOI | MR | Zbl

[8] Xarles X., “The scheme of connecned components of the Neron model of an algebraic torus”, J. reine angew. Math., 437 (1993), 167–179 | MR | Zbl

[9] Weil A., Adeles and algebraic groups, Lecture notes, Princeton, 1961