Integral structures in algebraic tori
Izvestiya. Mathematics , Tome 59 (1995) no. 5, pp. 881-897

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result is the construction of a minimal integral model of an algebraic torus defined over a complete non-Archimedean extension of an algebraic number field. The structure of such models is studied. The main problem is the study of the model in the case of a ramified splitting field. Reductions of these models with respect to a simple module are described. Minimal models of tori over the ring of algebraic integers are constructed. The local volumes and class numbers of some models are calculated.
@article{IM2_1995_59_5_a0,
     author = {V. E. Voskresenskii and T. V. Fomina},
     title = {Integral structures in algebraic tori},
     journal = {Izvestiya. Mathematics },
     pages = {881--897},
     publisher = {mathdoc},
     volume = {59},
     number = {5},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_5_a0/}
}
TY  - JOUR
AU  - V. E. Voskresenskii
AU  - T. V. Fomina
TI  - Integral structures in algebraic tori
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 881
EP  - 897
VL  - 59
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_59_5_a0/
LA  - en
ID  - IM2_1995_59_5_a0
ER  - 
%0 Journal Article
%A V. E. Voskresenskii
%A T. V. Fomina
%T Integral structures in algebraic tori
%J Izvestiya. Mathematics 
%D 1995
%P 881-897
%V 59
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_59_5_a0/
%G en
%F IM2_1995_59_5_a0
V. E. Voskresenskii; T. V. Fomina. Integral structures in algebraic tori. Izvestiya. Mathematics , Tome 59 (1995) no. 5, pp. 881-897. http://geodesic.mathdoc.fr/item/IM2_1995_59_5_a0/