Integral structures in algebraic tori
Izvestiya. Mathematics , Tome 59 (1995) no. 5, pp. 881-897
Voir la notice de l'article provenant de la source Math-Net.Ru
The main result is the construction of a minimal integral model of an algebraic torus defined over a complete non-Archimedean extension of an algebraic number field. The structure of such models is studied. The main problem is the study of the model in the case of a ramified splitting field. Reductions of these models with respect to a simple module are described. Minimal models of tori over the ring of algebraic integers are constructed. The local volumes and class numbers of some models are calculated.
@article{IM2_1995_59_5_a0,
author = {V. E. Voskresenskii and T. V. Fomina},
title = {Integral structures in algebraic tori},
journal = {Izvestiya. Mathematics },
pages = {881--897},
publisher = {mathdoc},
volume = {59},
number = {5},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_5_a0/}
}
V. E. Voskresenskii; T. V. Fomina. Integral structures in algebraic tori. Izvestiya. Mathematics , Tome 59 (1995) no. 5, pp. 881-897. http://geodesic.mathdoc.fr/item/IM2_1995_59_5_a0/