@article{IM2_1995_59_5_a0,
author = {V. E. Voskresenskii and T. V. Fomina},
title = {Integral structures in algebraic tori},
journal = {Izvestiya. Mathematics},
pages = {881--897},
year = {1995},
volume = {59},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_5_a0/}
}
V. E. Voskresenskii; T. V. Fomina. Integral structures in algebraic tori. Izvestiya. Mathematics, Tome 59 (1995) no. 5, pp. 881-897. http://geodesic.mathdoc.fr/item/IM2_1995_59_5_a0/
[1] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1985 | MR | Zbl
[2] Voskresenskii V. E., “Reduktsiya algebraicheskogo tora po prostomu modulyu”, Mezhdunarodnaya konferentsiya “Algebra i Analiz”. Tezisy dokladov, Ch. 1, Kazan, 1994, 26
[3] Serr Zh.-P., Algebraicheskie gruppy i polya klassov, Mir, M., 1968
[4] Fomina T. V., “Gruppa klassov normennoi giperpoverkhnosti”, Arifmetika i geometriya mnogoobrazii, Izd-vo Samarskogo un-ta, Samara, 1992, 140–146 | MR
[5] Fomina T. V., “Algebraicheskie tory nad lokalnymi polyami i ikh reduktsii”, Mezhdunarodnaya konferentsiya “Algebra i Analiz”. Tezisy dokladov, Ch. 1, Kazan, 1994, 98–99
[6] Katayama S., “Isogenous tori and the class number formulae”, J. Math. Kyoto Univ., 31 (1991), 679–694 | MR | Zbl
[7] Nart E., Xarles X., “Additive reduction of algebraic tori”, Arch. Math., 57 (1991), 460–466 | DOI | MR | Zbl
[8] Xarles X., “The scheme of connecned components of the Neron model of an algebraic torus”, J. reine angew. Math., 437 (1993), 167–179 | MR | Zbl
[9] Weil A., Adeles and algebraic groups, Lecture notes, Princeton, 1961