On the extension and smoothing of vector-valued functions
Izvestiya. Mathematics , Tome 59 (1995) no. 4, pp. 847-879
Voir la notice de l'article provenant de la source Math-Net.Ru
Smoothing of maps in Banach spaces is considered in this article. We construct an example of an infinitely differentiable vector-valued function on a subspace $L$ in $C[0,1]$ that does not have a uniformly continuous extension to a neighbourhood of $L$. The Kolmogorov widths obtained are correct in the order of growth of three parameters.
@article{IM2_1995_59_4_a9,
author = {I. G. Tsar'kov},
title = {On the extension and smoothing of vector-valued functions},
journal = {Izvestiya. Mathematics },
pages = {847--879},
publisher = {mathdoc},
volume = {59},
number = {4},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_4_a9/}
}
I. G. Tsar'kov. On the extension and smoothing of vector-valued functions. Izvestiya. Mathematics , Tome 59 (1995) no. 4, pp. 847-879. http://geodesic.mathdoc.fr/item/IM2_1995_59_4_a9/