On the extension and smoothing of vector-valued functions
Izvestiya. Mathematics , Tome 59 (1995) no. 4, pp. 847-879.

Voir la notice de l'article provenant de la source Math-Net.Ru

Smoothing of maps in Banach spaces is considered in this article. We construct an example of an infinitely differentiable vector-valued function on a subspace $L$ in $C[0,1]$ that does not have a uniformly continuous extension to a neighbourhood of $L$. The Kolmogorov widths obtained are correct in the order of growth of three parameters.
@article{IM2_1995_59_4_a9,
     author = {I. G. Tsar'kov},
     title = {On the extension and smoothing of vector-valued functions},
     journal = {Izvestiya. Mathematics },
     pages = {847--879},
     publisher = {mathdoc},
     volume = {59},
     number = {4},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_4_a9/}
}
TY  - JOUR
AU  - I. G. Tsar'kov
TI  - On the extension and smoothing of vector-valued functions
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 847
EP  - 879
VL  - 59
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_59_4_a9/
LA  - en
ID  - IM2_1995_59_4_a9
ER  - 
%0 Journal Article
%A I. G. Tsar'kov
%T On the extension and smoothing of vector-valued functions
%J Izvestiya. Mathematics 
%D 1995
%P 847-879
%V 59
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_59_4_a9/
%G en
%F IM2_1995_59_4_a9
I. G. Tsar'kov. On the extension and smoothing of vector-valued functions. Izvestiya. Mathematics , Tome 59 (1995) no. 4, pp. 847-879. http://geodesic.mathdoc.fr/item/IM2_1995_59_4_a9/

[1] Distel D., Geometriya banakhovykh prostranstv, Vischa shkola, Kiev, 1980 | MR

[2] Tsarkov I. G., “Sglazhivanie ravnomerno nepreryvnykh otobrazhenii v prostranstvakh $L_p$”, Matem. zametki., 54:3 (1993), 123–140 | MR

[3] Nemirovskii A. S., Semenov S. M., “O polinomialnoi approksimatsii na gilbertovom prostranstve”, Matem. sb., 92:2 (1973), 257–281 | MR | Zbl

[4] Czipszer J., Geher L., “Extension of functions satisfying a Lipschitz condition”, Acta Math. Acad. Sc. Hung., 6:1–2 (1955), 213–220 | DOI | MR | Zbl

[5] Kalton M. J., Roberts J. W., “Uniformly exhaustive submeasures”, Trans. Amer. Math. Soc., 278:2 (1983), 803–816 | DOI | MR | Zbl

[6] Brudnyi Yu. A., “Mnogomernyi analog odnoi teoremy Uitni”, Matem. sb., 82(124):2 (1970), 175–191 | MR | Zbl

[7] Newman D. I., Shapiro H. S., “Jackon's theorems in higher dimensions”, Proc. Conf. Approxim. Theory Oberwolfach 1963, Birkhaüser, Basel, 1964, 208–219 | MR

[8] Shvedov A. S., “Priblizhenie funktsii mnogikh peremennykh mnogochlenami i poperechniki nekotorykh funktsionalnykh klassov”, Analysis Mathematica, 8 (1982), 135–150 | DOI | MR | Zbl

[9] Tsarkov I. G., “Neravenstvo tipa Dzheksona dlya abstraktnykh funktsii”, Matem. sb., 180:5 (1989), 676–699 | MR

[10] Edvards R., Ryady Fure v sovremennom izlozhenii, Mir, M., 1985

[11] Tsarkov I. G., “O globalnom suschestvovanii neyavnoi funktsii”, Matem. sb., 184:7 (1993), 79–116 | MR

[12] Berdyshev V. I., “Nepreryvnost operatora metricheskogo proektirovaniya i ego obobschenii”, Konstruktivnaya teoriya funktsii'77, Sofiya, 1980, 29–34 | Zbl

[13] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981 | MR

[14] Tsarkov I. G., “Teoremy o globalnom suschestvovanii neyavnoi funktsii i ikh prilozheniya”, DAN, 324:4 (1992), 754–756 | MR

[15] Dzyadyk V. K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR | Zbl

[16] Kamzolov A. I., “O priblizhenii funktsii na sfere $S^n$”, SERDIKA B'lgarsko matematichesko spisanie, 10 (1984), 3–10 | MR | Zbl

[17] Tsarkov I. G., “Poperechniki i neravenstvo tipa Dzheksona dlya abstraktnykh funktsii”, Tr. MIRAN, 198, 1992, 219–231 | MR

[18] Kolmogorov A. N., Tikhomirov V. M., “$\varepsilon$-entropiya i $\varepsilon$-emkost mnozhestv v funktsionalnykh prostranstvakh”, UMN, 14:2 (1959), 3–86 | MR

[19] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976 | MR