On the extension and smoothing of vector-valued functions
Izvestiya. Mathematics , Tome 59 (1995) no. 4, pp. 847-879

Voir la notice de l'article provenant de la source Math-Net.Ru

Smoothing of maps in Banach spaces is considered in this article. We construct an example of an infinitely differentiable vector-valued function on a subspace $L$ in $C[0,1]$ that does not have a uniformly continuous extension to a neighbourhood of $L$. The Kolmogorov widths obtained are correct in the order of growth of three parameters.
@article{IM2_1995_59_4_a9,
     author = {I. G. Tsar'kov},
     title = {On the extension and smoothing of vector-valued functions},
     journal = {Izvestiya. Mathematics },
     pages = {847--879},
     publisher = {mathdoc},
     volume = {59},
     number = {4},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_4_a9/}
}
TY  - JOUR
AU  - I. G. Tsar'kov
TI  - On the extension and smoothing of vector-valued functions
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 847
EP  - 879
VL  - 59
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_59_4_a9/
LA  - en
ID  - IM2_1995_59_4_a9
ER  - 
%0 Journal Article
%A I. G. Tsar'kov
%T On the extension and smoothing of vector-valued functions
%J Izvestiya. Mathematics 
%D 1995
%P 847-879
%V 59
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_59_4_a9/
%G en
%F IM2_1995_59_4_a9
I. G. Tsar'kov. On the extension and smoothing of vector-valued functions. Izvestiya. Mathematics , Tome 59 (1995) no. 4, pp. 847-879. http://geodesic.mathdoc.fr/item/IM2_1995_59_4_a9/