Integral representation of entire functions and differential operators of infinite order
Izvestiya. Mathematics , Tome 59 (1995) no. 4, pp. 839-846

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we derive an integral representation in certain spaces of entire functions of exponential type in $\mathbb C^n$. To this end we use the isomorphism, given by the Laplace operator, between these spaces and the corresponding spaces of ultradistributions. Using this integral representation these functions admit a well-defined action of differential operators of infinite order with specific conditions on the characteristic function.
@article{IM2_1995_59_4_a8,
     author = {O. V. Odinokov},
     title = {Integral representation of entire functions and differential operators of infinite order},
     journal = {Izvestiya. Mathematics },
     pages = {839--846},
     publisher = {mathdoc},
     volume = {59},
     number = {4},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_4_a8/}
}
TY  - JOUR
AU  - O. V. Odinokov
TI  - Integral representation of entire functions and differential operators of infinite order
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 839
EP  - 846
VL  - 59
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_59_4_a8/
LA  - en
ID  - IM2_1995_59_4_a8
ER  - 
%0 Journal Article
%A O. V. Odinokov
%T Integral representation of entire functions and differential operators of infinite order
%J Izvestiya. Mathematics 
%D 1995
%P 839-846
%V 59
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_59_4_a8/
%G en
%F IM2_1995_59_4_a8
O. V. Odinokov. Integral representation of entire functions and differential operators of infinite order. Izvestiya. Mathematics , Tome 59 (1995) no. 4, pp. 839-846. http://geodesic.mathdoc.fr/item/IM2_1995_59_4_a8/