Diameters of classes of smooth functions
Izvestiya. Mathematics , Tome 59 (1995) no. 4, pp. 741-764
Voir la notice de l'article provenant de la source Math-Net.Ru
We describe the weak asymptotic behaviour of diameters of $n$-th order of the unit ball of $W_p^l H^\omega (I^d)$ in $L_q(I^d)$, where $I=(0,1)$, in dependence on $n$. Namely we consider the Kolmogorov diameter, the Gel'fand diameter, the linear diameter, the Aleksandrov diameter and the entropy diameter.
@article{IM2_1995_59_4_a4,
author = {S. N. Kudryavtsev},
title = {Diameters of classes of smooth functions},
journal = {Izvestiya. Mathematics },
pages = {741--764},
publisher = {mathdoc},
volume = {59},
number = {4},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_4_a4/}
}
S. N. Kudryavtsev. Diameters of classes of smooth functions. Izvestiya. Mathematics , Tome 59 (1995) no. 4, pp. 741-764. http://geodesic.mathdoc.fr/item/IM2_1995_59_4_a4/