Criteria for holomorphic completeness.~II
Izvestiya. Mathematics , Tome 59 (1995) no. 4, pp. 671-676

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a complex space $X$ of finite dimension $d$ is holomorphically complete if and only if the following conditions hold: 1) for an arbitrary point $x_0\in X$ there exists analysis sets $M_n\subset\dots\subset M_1\subset M_0=X$ and holomorphic function $f_i\in\Gamma(M_{i-1};\mathscr O_{M_{i-1}})$, $i=1,\dots,n$, such that $M_i=\{x\in M_{i-1}:f_i(x)=0\}$, and $\mathscr O_{M_i}=\mathscr O_{M_{i-1}}/f_i\mathscr O_{M_{i-1}}\mid M_i$ for each $i=1,\dots,n$, and $x_0$ is an isolated point in $M_n$; 2) $H^k(X;\mathscr O_X)=0$, for $k=1,\dots,d-1$.
@article{IM2_1995_59_4_a1,
     author = {V. D. Golovin},
     title = {Criteria for holomorphic {completeness.~II}},
     journal = {Izvestiya. Mathematics },
     pages = {671--676},
     publisher = {mathdoc},
     volume = {59},
     number = {4},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_4_a1/}
}
TY  - JOUR
AU  - V. D. Golovin
TI  - Criteria for holomorphic completeness.~II
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 671
EP  - 676
VL  - 59
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_59_4_a1/
LA  - en
ID  - IM2_1995_59_4_a1
ER  - 
%0 Journal Article
%A V. D. Golovin
%T Criteria for holomorphic completeness.~II
%J Izvestiya. Mathematics 
%D 1995
%P 671-676
%V 59
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_59_4_a1/
%G en
%F IM2_1995_59_4_a1
V. D. Golovin. Criteria for holomorphic completeness.~II. Izvestiya. Mathematics , Tome 59 (1995) no. 4, pp. 671-676. http://geodesic.mathdoc.fr/item/IM2_1995_59_4_a1/