Criteria for holomorphic completeness.~II
Izvestiya. Mathematics , Tome 59 (1995) no. 4, pp. 671-676.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a complex space $X$ of finite dimension $d$ is holomorphically complete if and only if the following conditions hold: 1) for an arbitrary point $x_0\in X$ there exists analysis sets $M_n\subset\dots\subset M_1\subset M_0=X$ and holomorphic function $f_i\in\Gamma(M_{i-1};\mathscr O_{M_{i-1}})$, $i=1,\dots,n$, such that $M_i=\{x\in M_{i-1}:f_i(x)=0\}$, and $\mathscr O_{M_i}=\mathscr O_{M_{i-1}}/f_i\mathscr O_{M_{i-1}}\mid M_i$ for each $i=1,\dots,n$, and $x_0$ is an isolated point in $M_n$; 2) $H^k(X;\mathscr O_X)=0$, for $k=1,\dots,d-1$.
@article{IM2_1995_59_4_a1,
     author = {V. D. Golovin},
     title = {Criteria for holomorphic {completeness.~II}},
     journal = {Izvestiya. Mathematics },
     pages = {671--676},
     publisher = {mathdoc},
     volume = {59},
     number = {4},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_4_a1/}
}
TY  - JOUR
AU  - V. D. Golovin
TI  - Criteria for holomorphic completeness.~II
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 671
EP  - 676
VL  - 59
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_59_4_a1/
LA  - en
ID  - IM2_1995_59_4_a1
ER  - 
%0 Journal Article
%A V. D. Golovin
%T Criteria for holomorphic completeness.~II
%J Izvestiya. Mathematics 
%D 1995
%P 671-676
%V 59
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_59_4_a1/
%G en
%F IM2_1995_59_4_a1
V. D. Golovin. Criteria for holomorphic completeness.~II. Izvestiya. Mathematics , Tome 59 (1995) no. 4, pp. 671-676. http://geodesic.mathdoc.fr/item/IM2_1995_59_4_a1/

[1] Serre J.-P., “Quelques problèmes globaux relatifs aux variétés de Stein”, Coll. fonct. plus. variabl., Masson, Bruxelles–Paris, 1953, 57–68 | MR

[2] Grauert H., Remmert R., Theory of Stein spaces, Springer-Verlag, Berlin, 1979 | MR | Zbl

[3] Laufer H. B., “On sheaf cohomology and envelopes of holomorphy”, Ann. of Math., 84:1 (1966), 102–118 | DOI | MR | Zbl

[4] Siu Y.-T., “Non-countable dimensions of cohomology groups of analytic sheaves and domains of holomorphy”, Math. Z., 102:1 (1967), 17–29 | DOI | MR | Zbl

[5] Bǎnicǎ C., Stǎnǎşilǎ O., “Sur les ouverts de Stein dans un espace complexe”, C.r. Acad. sci. Paris, 268:18 (1969), 1024–1027 | MR

[6] Coen S., “Annulation de la cohomologie à valeurs dans le faisceau structural et espaces de Stein”, Compos. math., 37:1 (1978), 63–75 | MR | Zbl

[7] Golovin V. D., Gomologii analiticheskikh puchkov i teoremy dvoistvennosti, Nauka, M., 1986 | MR

[8] Golovin V. D., “Kriterii golomorfnoi polnoty”, Izv. AN SSSR. Seriya matem., 55:4 (1991), 838–850 | MR