The construction of quadrature formulae
Izvestiya. Mathematics, Tome 59 (1995) no. 4, pp. 665-670
Cet article a éte moissonné depuis la source Math-Net.Ru
A method for effectively constructing quadrature formulae that are exact on Fourier polynomials is proposed. This method is based on the arithmetic of cyclotomic fields, and depends only slightly on the degree of the polynomial.
@article{IM2_1995_59_4_a0,
author = {S. M. Voronin},
title = {The construction of quadrature formulae},
journal = {Izvestiya. Mathematics},
pages = {665--670},
year = {1995},
volume = {59},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_4_a0/}
}
S. M. Voronin. The construction of quadrature formulae. Izvestiya. Mathematics, Tome 59 (1995) no. 4, pp. 665-670. http://geodesic.mathdoc.fr/item/IM2_1995_59_4_a0/
[1] Voronin S. M., Temirgaliev N., “O kvadraturnykh formulakh, svyazannykh s divizorami polya gaussovykh chisel”, Matem. zametki, 46:2 (1989), 34–41 | MR | Zbl
[2] Temirgaliev N., “Primenenie teorii divizorov k chislennomu integrirovaniyu periodicheskikh funktsii mnogikh peremennykh”, Matem. sb., 181:4 (1990), 490–505
[3] Voronin S. M., “O kvadraturnykh formulakh”, Izv. AN. Ser. matem., 58:5 (1994), 189–194 | MR
[4] Leng S., Algebraicheskie chisla, Mir, M., 1966 | MR
[5] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1985 | MR | Zbl
[6] Van der Varden V. L., Algebra, Nauka, M., 1976 | MR