Surfaces of type~K3 over number fields and the Mumford--Tate conjecture.~II
Izvestiya. Mathematics , Tome 59 (1995) no. 3, pp. 619-646

Voir la notice de l'article provenant de la source Math-Net.Ru

The Mumford–Tate conjecture is proved for any smooth projective surface of type K3 over a number field.
@article{IM2_1995_59_3_a6,
     author = {S. G. Tankeev},
     title = {Surfaces of {type~K3} over number fields and the {Mumford--Tate} {conjecture.~II}},
     journal = {Izvestiya. Mathematics },
     pages = {619--646},
     publisher = {mathdoc},
     volume = {59},
     number = {3},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_3_a6/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - Surfaces of type~K3 over number fields and the Mumford--Tate conjecture.~II
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 619
EP  - 646
VL  - 59
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_59_3_a6/
LA  - en
ID  - IM2_1995_59_3_a6
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T Surfaces of type~K3 over number fields and the Mumford--Tate conjecture.~II
%J Izvestiya. Mathematics 
%D 1995
%P 619-646
%V 59
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_59_3_a6/
%G en
%F IM2_1995_59_3_a6
S. G. Tankeev. Surfaces of type~K3 over number fields and the Mumford--Tate conjecture.~II. Izvestiya. Mathematics , Tome 59 (1995) no. 3, pp. 619-646. http://geodesic.mathdoc.fr/item/IM2_1995_59_3_a6/