Real quadrics of codimension 3 in~$\mathbb C^6$ and their non-linear automorphisms
Izvestiya. Mathematics , Tome 59 (1995) no. 3, pp. 597-617

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, non-degenerate $(3,3)$-quadrics are considered. A list of quadrics with non-linear automorphisms is obtained up to equivalence. All nullquadrics of codimension 3 in $\mathbb C^6$ are determined. We give an example of a quadric with a non-linear automorphism not representable as a Poincare automorphism.
@article{IM2_1995_59_3_a5,
     author = {N. F. Palinchak},
     title = {Real quadrics of codimension 3 in~$\mathbb C^6$ and their non-linear automorphisms},
     journal = {Izvestiya. Mathematics },
     pages = {597--617},
     publisher = {mathdoc},
     volume = {59},
     number = {3},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_3_a5/}
}
TY  - JOUR
AU  - N. F. Palinchak
TI  - Real quadrics of codimension 3 in~$\mathbb C^6$ and their non-linear automorphisms
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 597
EP  - 617
VL  - 59
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_59_3_a5/
LA  - en
ID  - IM2_1995_59_3_a5
ER  - 
%0 Journal Article
%A N. F. Palinchak
%T Real quadrics of codimension 3 in~$\mathbb C^6$ and their non-linear automorphisms
%J Izvestiya. Mathematics 
%D 1995
%P 597-617
%V 59
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_59_3_a5/
%G en
%F IM2_1995_59_3_a5
N. F. Palinchak. Real quadrics of codimension 3 in~$\mathbb C^6$ and their non-linear automorphisms. Izvestiya. Mathematics , Tome 59 (1995) no. 3, pp. 597-617. http://geodesic.mathdoc.fr/item/IM2_1995_59_3_a5/