Real quadrics of codimension 3 in~$\mathbb C^6$ and their non-linear automorphisms
Izvestiya. Mathematics , Tome 59 (1995) no. 3, pp. 597-617.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, non-degenerate $(3,3)$-quadrics are considered. A list of quadrics with non-linear automorphisms is obtained up to equivalence. All nullquadrics of codimension 3 in $\mathbb C^6$ are determined. We give an example of a quadric with a non-linear automorphism not representable as a Poincare automorphism.
@article{IM2_1995_59_3_a5,
     author = {N. F. Palinchak},
     title = {Real quadrics of codimension 3 in~$\mathbb C^6$ and their non-linear automorphisms},
     journal = {Izvestiya. Mathematics },
     pages = {597--617},
     publisher = {mathdoc},
     volume = {59},
     number = {3},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_3_a5/}
}
TY  - JOUR
AU  - N. F. Palinchak
TI  - Real quadrics of codimension 3 in~$\mathbb C^6$ and their non-linear automorphisms
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 597
EP  - 617
VL  - 59
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_59_3_a5/
LA  - en
ID  - IM2_1995_59_3_a5
ER  - 
%0 Journal Article
%A N. F. Palinchak
%T Real quadrics of codimension 3 in~$\mathbb C^6$ and their non-linear automorphisms
%J Izvestiya. Mathematics 
%D 1995
%P 597-617
%V 59
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_59_3_a5/
%G en
%F IM2_1995_59_3_a5
N. F. Palinchak. Real quadrics of codimension 3 in~$\mathbb C^6$ and their non-linear automorphisms. Izvestiya. Mathematics , Tome 59 (1995) no. 3, pp. 597-617. http://geodesic.mathdoc.fr/item/IM2_1995_59_3_a5/

[1] Beloshapka V. K., “O postroenii normalnoi formy uravneniya poverkhnosti vysokoi korazmernosti”, Matem. zametki, 48:2 (1990), 3–9 | MR | Zbl

[2] Beloshapka V. K., “Konechnomernost gruppy avtomorfizmov veschestvenno analiticheskoi poverkhnosti”, Izv. AN SSSR. Ser. matem., 52:2 (1988), 437–442 | MR | Zbl

[3] Beloshapka V. K., “O golomorfnykh preobrazovaniyakh kvadriki”, Matem. sb., 182:2 (1991), 203–219 | MR | Zbl

[4] Abrosimov A. V., “Opisanie lokalno bigolomorfnykh avtomorfizmov standartnykh kvadrik korazmernosti dva”, Matem. sb., 184:10 (1993), 3–53

[5] Shevchenko S. N., “Opisanie algebry infinitezimalnykh avtomorfizmov kvadrik korazmernosti dva i ikh klassifikatsiya”, Matem. zametki, 55:5 (1994), 142–153 | MR | Zbl

[6] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989 | MR

[7] Turnbull H. W., “On equivalence of pencils of Hermitian forms”, Proc. London Math. Soc. (2), 32:3 (1935), 232–248 | DOI

[8] Ezov V. V., Schmalz G., Poincare Automorphisms for nondegenerate $\mathrm{CR}$-quadrics, Preprint, Max-Plank-Institute für Mathematik, Bonn, 1993 | MR

[9] Palinchak N. F., “O kvadrikakh vysokoi korazmernosti”, Matem. zametki, 55:5 (1994), 110–115 | MR | Zbl

[10] Loboda A. V., “Porozhdayuschie veschestvenno analiticheskie mnogoobraziya korazmernosti $2$ v $\mathbb C^{4}$ i ikh bigolomorfnye otobrazheniya”, Izv. AN SSSR. Ser. matem., 52:5 (1988), 970–990 | MR | Zbl