Existence of countably many stable cycles in media with dispersion
Izvestiya. Mathematics , Tome 59 (1995) no. 3, pp. 579-595

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem in the title is analyzed in two typical examples of equations with dispersion: the Korteweg–de Vries equation, and the equation for vibrations of a beam. Also, features of the dynamics are considered for the Boussinesq equation, which does not have dispersion.
@article{IM2_1995_59_3_a4,
     author = {A. Yu. Kolesov},
     title = {Existence of countably many stable cycles in media with dispersion},
     journal = {Izvestiya. Mathematics },
     pages = {579--595},
     publisher = {mathdoc},
     volume = {59},
     number = {3},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_3_a4/}
}
TY  - JOUR
AU  - A. Yu. Kolesov
TI  - Existence of countably many stable cycles in media with dispersion
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 579
EP  - 595
VL  - 59
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_59_3_a4/
LA  - en
ID  - IM2_1995_59_3_a4
ER  - 
%0 Journal Article
%A A. Yu. Kolesov
%T Existence of countably many stable cycles in media with dispersion
%J Izvestiya. Mathematics 
%D 1995
%P 579-595
%V 59
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_59_3_a4/
%G en
%F IM2_1995_59_3_a4
A. Yu. Kolesov. Existence of countably many stable cycles in media with dispersion. Izvestiya. Mathematics , Tome 59 (1995) no. 3, pp. 579-595. http://geodesic.mathdoc.fr/item/IM2_1995_59_3_a4/