Construction of the cotangent bundle of a~locally compact group
Izvestiya. Mathematics , Tome 59 (1995) no. 3, pp. 445-470
Voir la notice de l'article provenant de la source Math-Net.Ru
The existence is proved of “a generalized” smooth structure on the cotangent bundle $T'G$ of an arbitrary locally compact group $G$, turning $T'G$ into a paracompact (possibly infinite-dimensional) smooth manifold. A symplectic form $\omega$ on $T'G$ is constructed, which is naturally related to the Poisson brackets in the algebra of symbols on $G$ and the Lie–Poisson structure in the momentum space $A'(G)$.
@article{IM2_1995_59_3_a0,
author = {S. S. Akbarov},
title = {Construction of the cotangent bundle of a~locally compact group},
journal = {Izvestiya. Mathematics },
pages = {445--470},
publisher = {mathdoc},
volume = {59},
number = {3},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_3_a0/}
}
S. S. Akbarov. Construction of the cotangent bundle of a~locally compact group. Izvestiya. Mathematics , Tome 59 (1995) no. 3, pp. 445-470. http://geodesic.mathdoc.fr/item/IM2_1995_59_3_a0/