Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1995_59_2_a9, author = {A. S. Holevo}, title = {On translation-covariant quantum {Markov} equations}, journal = {Izvestiya. Mathematics }, pages = {427--443}, publisher = {mathdoc}, volume = {59}, number = {2}, year = {1995}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_2_a9/} }
A. S. Holevo. On translation-covariant quantum Markov equations. Izvestiya. Mathematics , Tome 59 (1995) no. 2, pp. 427-443. http://geodesic.mathdoc.fr/item/IM2_1995_59_2_a9/
[1] Davies E. B., Quantum theory of open systems, Academic Press, London, 1976 | MR | Zbl
[2] Evans D. E., Lewis J. T., Dilations of irreversible evolutions in algebraic quantum theory, Commun. of Dublin Inst. of Adv. Studies, Ser. A, 24, Dublin, 1977 | MR | Zbl
[3] Alicki R., Lendi K., Quantum dynamical semigroups and applications, Lect. Notes Phys., 286, Springer, Berlin–Heidelberg–New York, 1987 | MR | Zbl
[4] Kholevo A. S., “Struktura kovariantnykh dinamicheskikh polugrupp”, Dokl. RAN, 328:6 (1993), 666–670 | MR | Zbl
[5] Holevo A. S., On the structure of covariant dynamical semigroups, Preprint, Nottingham University, 1993
[6] Dixmier J., Les algèbres d'operateurs dans l'espace Hilbertien (Algèbres de von Neumann), Gauthier-Villars, Paris, 1969
[7] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | Zbl
[8] Naimark M. A., Normirovannye koltsa, Nauka, M., 1968 | MR | Zbl
[9] Guichardet A., Symmetric Hilbert spaces and related topics, Lect. Notes Math., 261, Springer, Berlin–Heidelberg–New York, 1972 | MR | Zbl
[10] Davies E. B., “Quantum dynamical semigroups and the neutron diffusion equation”, Rept. Math. Phys., 11:2 (1977), 169–188 | DOI | MR | Zbl
[11] Chebotarev A. M., “Neobkhodimye i dostatochnye usloviya konservativnosti dinamicheskikh polugrupp”, Itogi nauki i tekhniki. Sovr. probl. matematiki, 36, VINITI, M., 1990, 149–184
[12] Holevo A. S., “On conservativity of covariant dynamical semigroups”, Rept. Math. Phys., 33:1/2 (1993), 95–110 | DOI | MR | Zbl