On translation-covariant quantum Markov equations
Izvestiya. Mathematics , Tome 59 (1995) no. 2, pp. 427-443.

Voir la notice de l'article provenant de la source Math-Net.Ru

The structure of quantum Markov control equations with unbounded generators and covariant with respect to 1) irreducible representation of the Weyl CCR on $R^d$ and 2) representation of the group of $R^d$, is completely described via non-commutative Levy–Khinchin-type formulae. The existence and uniqueness of solutions for such equations is briefly discussed.
@article{IM2_1995_59_2_a9,
     author = {A. S. Holevo},
     title = {On translation-covariant quantum {Markov} equations},
     journal = {Izvestiya. Mathematics },
     pages = {427--443},
     publisher = {mathdoc},
     volume = {59},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_2_a9/}
}
TY  - JOUR
AU  - A. S. Holevo
TI  - On translation-covariant quantum Markov equations
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 427
EP  - 443
VL  - 59
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_59_2_a9/
LA  - en
ID  - IM2_1995_59_2_a9
ER  - 
%0 Journal Article
%A A. S. Holevo
%T On translation-covariant quantum Markov equations
%J Izvestiya. Mathematics 
%D 1995
%P 427-443
%V 59
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_59_2_a9/
%G en
%F IM2_1995_59_2_a9
A. S. Holevo. On translation-covariant quantum Markov equations. Izvestiya. Mathematics , Tome 59 (1995) no. 2, pp. 427-443. http://geodesic.mathdoc.fr/item/IM2_1995_59_2_a9/

[1] Davies E. B., Quantum theory of open systems, Academic Press, London, 1976 | MR | Zbl

[2] Evans D. E., Lewis J. T., Dilations of irreversible evolutions in algebraic quantum theory, Commun. of Dublin Inst. of Adv. Studies, Ser. A, 24, Dublin, 1977 | MR | Zbl

[3] Alicki R., Lendi K., Quantum dynamical semigroups and applications, Lect. Notes Phys., 286, Springer, Berlin–Heidelberg–New York, 1987 | MR | Zbl

[4] Kholevo A. S., “Struktura kovariantnykh dinamicheskikh polugrupp”, Dokl. RAN, 328:6 (1993), 666–670 | MR | Zbl

[5] Holevo A. S., On the structure of covariant dynamical semigroups, Preprint, Nottingham University, 1993

[6] Dixmier J., Les algèbres d'operateurs dans l'espace Hilbertien (Algèbres de von Neumann), Gauthier-Villars, Paris, 1969

[7] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | Zbl

[8] Naimark M. A., Normirovannye koltsa, Nauka, M., 1968 | MR | Zbl

[9] Guichardet A., Symmetric Hilbert spaces and related topics, Lect. Notes Math., 261, Springer, Berlin–Heidelberg–New York, 1972 | MR | Zbl

[10] Davies E. B., “Quantum dynamical semigroups and the neutron diffusion equation”, Rept. Math. Phys., 11:2 (1977), 169–188 | DOI | MR | Zbl

[11] Chebotarev A. M., “Neobkhodimye i dostatochnye usloviya konservativnosti dinamicheskikh polugrupp”, Itogi nauki i tekhniki. Sovr. probl. matematiki, 36, VINITI, M., 1990, 149–184

[12] Holevo A. S., “On conservativity of covariant dynamical semigroups”, Rept. Math. Phys., 33:1/2 (1993), 95–110 | DOI | MR | Zbl