On translation-covariant quantum Markov equations
Izvestiya. Mathematics , Tome 59 (1995) no. 2, pp. 427-443

Voir la notice de l'article provenant de la source Math-Net.Ru

The structure of quantum Markov control equations with unbounded generators and covariant with respect to 1) irreducible representation of the Weyl CCR on $R^d$ and 2) representation of the group of $R^d$, is completely described via non-commutative Levy–Khinchin-type formulae. The existence and uniqueness of solutions for such equations is briefly discussed.
@article{IM2_1995_59_2_a9,
     author = {A. S. Holevo},
     title = {On translation-covariant quantum {Markov} equations},
     journal = {Izvestiya. Mathematics },
     pages = {427--443},
     publisher = {mathdoc},
     volume = {59},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_2_a9/}
}
TY  - JOUR
AU  - A. S. Holevo
TI  - On translation-covariant quantum Markov equations
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 427
EP  - 443
VL  - 59
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_59_2_a9/
LA  - en
ID  - IM2_1995_59_2_a9
ER  - 
%0 Journal Article
%A A. S. Holevo
%T On translation-covariant quantum Markov equations
%J Izvestiya. Mathematics 
%D 1995
%P 427-443
%V 59
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_59_2_a9/
%G en
%F IM2_1995_59_2_a9
A. S. Holevo. On translation-covariant quantum Markov equations. Izvestiya. Mathematics , Tome 59 (1995) no. 2, pp. 427-443. http://geodesic.mathdoc.fr/item/IM2_1995_59_2_a9/