On the monodromy and mixed Hodge structure on cohomology of the infinite cyclic covering of the complement to a~plane algebraic curve
Izvestiya. Mathematics , Tome 59 (1995) no. 2, pp. 367-386.

Voir la notice de l'article provenant de la source Math-Net.Ru

The semisimplicity is proved of the Alexander automorphism (the monodromy operator) on the cohomology $H^1(X_\infty)_{\ne 1}$ of the infinite cyclic covering of the complement to a plane non-reduced algebraic curve, and, in particular, the semisimplicity of $H^1(X_\infty)$ in the case of an irreducible curve. A natural mixed Hodge structure on $H^1(X_\infty)$ is introduced and the irregularity of cyclic coverings of $P^2$ is calculated in terms of the number of roots of the Alexander polynomial of the branch curve.
@article{IM2_1995_59_2_a6,
     author = {Vik. S. Kulikov and V. S. Kulikov},
     title = {On the monodromy and mixed {Hodge} structure on cohomology of the infinite cyclic covering of the complement to a~plane algebraic curve},
     journal = {Izvestiya. Mathematics },
     pages = {367--386},
     publisher = {mathdoc},
     volume = {59},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_2_a6/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
AU  - V. S. Kulikov
TI  - On the monodromy and mixed Hodge structure on cohomology of the infinite cyclic covering of the complement to a~plane algebraic curve
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 367
EP  - 386
VL  - 59
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_59_2_a6/
LA  - en
ID  - IM2_1995_59_2_a6
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%A V. S. Kulikov
%T On the monodromy and mixed Hodge structure on cohomology of the infinite cyclic covering of the complement to a~plane algebraic curve
%J Izvestiya. Mathematics 
%D 1995
%P 367-386
%V 59
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_59_2_a6/
%G en
%F IM2_1995_59_2_a6
Vik. S. Kulikov; V. S. Kulikov. On the monodromy and mixed Hodge structure on cohomology of the infinite cyclic covering of the complement to a~plane algebraic curve. Izvestiya. Mathematics , Tome 59 (1995) no. 2, pp. 367-386. http://geodesic.mathdoc.fr/item/IM2_1995_59_2_a6/

[1] Esnault H., “Fibre de Milnor d'un cone sur une courbe plane singuliere”, Invent. Math., 54:2 (1982), 318–327 | MR

[2] Griffiths Ph., Schmid W., “Recent development in Hodge theory: a discussion of techniques and results”, Proc. Int. Coll. Bombay (1973), Oxford Univ. Press, 1975, 31–127 | MR

[3] Kulikov Vik. S., “Mnogochleny Aleksandera ploskikh algebraicheskikh krivykh”, Izv. AN. Ser. matem., 57:1 (1993), 76–101 | MR | Zbl

[4] Kulikov Vik. S., “Mnogochleny Aleksandera ploskikh algebraicheskikh krivykh, II”, Tr. MIAN, 208, Nauka, M., 1995, 224–239 | MR | Zbl

[5] Kempf G. et al., Toroidal embeddings, Lect. Notes Math., 339, Springer-Verlag, 1973 | MR

[6] Libgober A., “Alexander polynomials of plane algebraic curves and cyclic multiple planes”, Duke Math. J., 49 (1982), 833–851 | DOI | MR | Zbl

[7] Milnor J., “Infinite cyclic coverings”, Topology of manifolds, Prindle, Weber and Schmidt, Boston, 1968, 115–133 | MR

[8] Randell R., “Milnor fibres and Alexander polynomials of plane curves”, Proc. Symp. Pure Math., Part 2, 40, AMS, 1983, 415–420 | MR

[9] Steenbrink J. H. M., “Mixed Hodge structure on the vanishing cohomology”, Real and Complex Singularities (Oslo, 1976), ed. P. Holm, Alphen a/d Rijn, Sijthoff–Noordhoff, 1977, 525–563 | MR