$u$-convergence of multiple Fourier series
Izvestiya. Mathematics , Tome 59 (1995) no. 2, pp. 353-366.

Voir la notice de l'article provenant de la source Math-Net.Ru

The $u$-convergence of multiple Fourier series is studied, generalizing convergence in the Pringsheim sense, with respect to spheres. A definitive condition in terms of moduli of smoothness is found on a functional class that implies the $u$-convergence of Fourier series in the metrics $L_p(T^m)$, where $1\leqslant p\leqslant\infty$, $p\ne 2$ and $m\geqslant 2$.
@article{IM2_1995_59_2_a5,
     author = {M. I. Dyachenko},
     title = {$u$-convergence of multiple {Fourier} series},
     journal = {Izvestiya. Mathematics },
     pages = {353--366},
     publisher = {mathdoc},
     volume = {59},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_2_a5/}
}
TY  - JOUR
AU  - M. I. Dyachenko
TI  - $u$-convergence of multiple Fourier series
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 353
EP  - 366
VL  - 59
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_59_2_a5/
LA  - en
ID  - IM2_1995_59_2_a5
ER  - 
%0 Journal Article
%A M. I. Dyachenko
%T $u$-convergence of multiple Fourier series
%J Izvestiya. Mathematics 
%D 1995
%P 353-366
%V 59
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_59_2_a5/
%G en
%F IM2_1995_59_2_a5
M. I. Dyachenko. $u$-convergence of multiple Fourier series. Izvestiya. Mathematics , Tome 59 (1995) no. 2, pp. 353-366. http://geodesic.mathdoc.fr/item/IM2_1995_59_2_a5/

[1] Arutyunyan F. G., “Predstavlenie funktsii kratnymi ryadami”, DAN Arm. SSR, 64:2 (1977), 72 – 76 | MR | Zbl

[2] Arutyunyan F. G., “Predstavlenie izmerimykh funktsii mnogikh peremennykh kratnymi trigonometricheskimi ryadami”, Matem. sb., 126:2 (1985), 267–285 | MR | Zbl

[3] Dyachenko M. I., “Nekotorye problemy teorii kratnykh trigonometricheskikh ryadov”, UMN, 47:5 (1992), 97–162 | MR | Zbl

[4] Hardy G. H., “On double Fourier series and especially those which represent the double zeta-function with real and incommensurable parameters”, Quart. J. Math., 37:1 (1906), 53–79 | MR

[5] Chandrasekharan K., Minakhisundaram S., “Some results on double Fourie series”, Duke Math. J., 14:3 (1947), 731–753 | DOI | MR | Zbl

[6] Golubov B. I., “O skhodimosti sfericheskikh srednikh Rissa kratnykh ryadov i integralov Fure ot funktsii ogranichennoi obobschennoi variatsii”, Matem. sb., 89:4 (1972), 630–653 | MR | Zbl

[7] Temlyakov V. N., “O povedenii chastnykh summ po giperbolicheskim krestam ryadov Fure periodicheskikh funktsii mnogikh peremennykh”, Tr. MIAN, 192, Nauka, M., 1990, 197–206 | MR

[8] Zhizhiashvili L. V., “O nekotorykh voprosakh iz teorii prostykh i kratnykh trigonometricheskikh i ortogonalnykh ryadov”, UMN, 28:2 (1973), 65–119 | MR

[9] Sokol-Sokolowski K., “On trigonometric series conjugate to Fourier series of two variables”, Fund. Math., 34 (1947), 166–182 | MR | Zbl

[10] Mityagin B. S, Nikishin E. M., “O raskhodimosti spektralnykh razlozhenii v srednem i pochti vsyudu”, DAN SSSR, 212:3 (1973), 551–552 | MR | Zbl

[11] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR

[12] Alimov Sh. A., Ilin V. A., “Usloviya skhodimosti spektralnykh razlozhenii, otvechayuschikh samosopryazhennym rasshireniyam ellipticheskikh operatorov”, Diff. uravneniya, 7:4 (1971), 670–710 | MR | Zbl

[13] Yudin V. A., “Sfericheskie summy ryadov Fure v $L_p$”, Matem. zametki, 46:2 (1989), 145–152 | MR | Zbl

[14] Dyachenko M. I., “Poryadok rosta konstant Lebega yader Dirikhle monotonnogo tipa”, Vest. MGU. Ser. 1, 1989, no. 6, 33–37 | MR | Zbl

[15] Yudin A. A., Yudin V. A., “Diskretnye teoremy vlozheniya i konstanty Lebega”, Matem. zametki, 22:3 (1977), 381–394 | MR | Zbl

[16] Zigmund A., Trigonometricheskie ryady, T. 2, Mir, M., 1965 | MR

[17] Rudin W., “Some theorems on Fourier coefficients”, Proc. Amer. Math. Soc., 10 (1959), 855–859 | DOI | MR | Zbl