$u$-convergence of multiple Fourier series
Izvestiya. Mathematics , Tome 59 (1995) no. 2, pp. 353-366

Voir la notice de l'article provenant de la source Math-Net.Ru

The $u$-convergence of multiple Fourier series is studied, generalizing convergence in the Pringsheim sense, with respect to spheres. A definitive condition in terms of moduli of smoothness is found on a functional class that implies the $u$-convergence of Fourier series in the metrics $L_p(T^m)$, where $1\leqslant p\leqslant\infty$, $p\ne 2$ and $m\geqslant 2$.
@article{IM2_1995_59_2_a5,
     author = {M. I. Dyachenko},
     title = {$u$-convergence of multiple {Fourier} series},
     journal = {Izvestiya. Mathematics },
     pages = {353--366},
     publisher = {mathdoc},
     volume = {59},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_2_a5/}
}
TY  - JOUR
AU  - M. I. Dyachenko
TI  - $u$-convergence of multiple Fourier series
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 353
EP  - 366
VL  - 59
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_59_2_a5/
LA  - en
ID  - IM2_1995_59_2_a5
ER  - 
%0 Journal Article
%A M. I. Dyachenko
%T $u$-convergence of multiple Fourier series
%J Izvestiya. Mathematics 
%D 1995
%P 353-366
%V 59
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_59_2_a5/
%G en
%F IM2_1995_59_2_a5
M. I. Dyachenko. $u$-convergence of multiple Fourier series. Izvestiya. Mathematics , Tome 59 (1995) no. 2, pp. 353-366. http://geodesic.mathdoc.fr/item/IM2_1995_59_2_a5/