A characterization of the free actions of zero-dimensional compact groups on $k$-dimensional Menger compacta
Izvestiya. Mathematics , Tome 59 (1995) no. 2, pp. 229-270
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper contains a theorem characterizing free actions of a zerodimensional compact group $G$ on a $k$-dimensional Menger compactum $\mu^k$: two free actions $\alpha\colon G\times\mu^k\to\mu^k$ and $\alpha_1\colon G\times\mu^k\to\mu^k$ are equivalent provided that the dimensions of the orbit spaces are equal to $k$ and the actions are strongly universal with respect to the class of free compacta $Y$ with $\dim(Y/G)\leqslant k$. This theorem, as well as other results of the paper, suggest that, in the category of compact spaces equipped with free actions of groups of the above type, there are distinguished objects (referred to in what follows as free Menger compacta $\mu^k_f$), with properties analogous to those of the classical Menger compacta $\mu^k$.
@article{IM2_1995_59_2_a0,
author = {S. M. Ageev},
title = {A characterization of the free actions of zero-dimensional compact groups on $k$-dimensional {Menger} compacta},
journal = {Izvestiya. Mathematics },
pages = {229--270},
publisher = {mathdoc},
volume = {59},
number = {2},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_2_a0/}
}
TY - JOUR AU - S. M. Ageev TI - A characterization of the free actions of zero-dimensional compact groups on $k$-dimensional Menger compacta JO - Izvestiya. Mathematics PY - 1995 SP - 229 EP - 270 VL - 59 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1995_59_2_a0/ LA - en ID - IM2_1995_59_2_a0 ER -
S. M. Ageev. A characterization of the free actions of zero-dimensional compact groups on $k$-dimensional Menger compacta. Izvestiya. Mathematics , Tome 59 (1995) no. 2, pp. 229-270. http://geodesic.mathdoc.fr/item/IM2_1995_59_2_a0/