Completely integrable projective symplectic 4-dimensional varieties
Izvestiya. Mathematics , Tome 59 (1995) no. 1, pp. 159-187.

Voir la notice de l'article provenant de la source Math-Net.Ru

Families of Liouville tori on a completely integrable compact complex symplectic manifold are considered as a tool for constructing such manifolds: given a family of $n$-dimensional tori with degenerations over an $n$-dimensional base, find conditions which guarantee the existence of a symplectic structure on this family such that the generic fiber is maximal isotropic. This question is studied for families of Jacobians of genus 2 curves in terms of the relative compactified Jacobian and point Hilbert scheme. The question on possible bases of families of Liouville tori is investigated in using Fujita–Kawamata–Viehweg–Kollár results on positivity properties of direct images of relative dualizing sheaves. In the case when the base surface is the projective plane, it is proved that the family of Jacobians is Liouville iff it is the Mukai transform of the Fujiki–Beauville 4-fold built from a hyperelliptic K3 surface. Bibliography: 44 titles.
@article{IM2_1995_59_1_a6,
     author = {D. G. Markushevich},
     title = {Completely integrable projective symplectic 4-dimensional varieties},
     journal = {Izvestiya. Mathematics },
     pages = {159--187},
     publisher = {mathdoc},
     volume = {59},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_1_a6/}
}
TY  - JOUR
AU  - D. G. Markushevich
TI  - Completely integrable projective symplectic 4-dimensional varieties
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 159
EP  - 187
VL  - 59
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_59_1_a6/
LA  - en
ID  - IM2_1995_59_1_a6
ER  - 
%0 Journal Article
%A D. G. Markushevich
%T Completely integrable projective symplectic 4-dimensional varieties
%J Izvestiya. Mathematics 
%D 1995
%P 159-187
%V 59
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_59_1_a6/
%G en
%F IM2_1995_59_1_a6
D. G. Markushevich. Completely integrable projective symplectic 4-dimensional varieties. Izvestiya. Mathematics , Tome 59 (1995) no. 1, pp. 159-187. http://geodesic.mathdoc.fr/item/IM2_1995_59_1_a6/

[AIK] Altman A.B., Iarrobino A., and Kleiman S.L., “Irreducibility of the Compactified Jacobian”, Real and Complex singularities, Proc. 9th Nordic Summer School (NAVF, Oslo, 1976), Sijthoff Noordhoff, Gronignen, 1977, 1–12 | MR

[AK-1] Altman A.B. and Kleiman S.L., “Compactifying the Picard Scheme”, Adv. Math., 35 (1980), 50–112 | DOI | MR | Zbl

[AK-2] Altman A.B. and Kleiman S.L., “The presentation functor and the compactified Jacobian”, The Grothendieck Festschrift. A Collection of Articles Written in Honor of the 60th Birthday of Alexandre Grothendieck, Vol. I, 86, Birkhäuser, Boston–Basel–Berlin, 1990, 15–32 | MR | Zbl

[Ar] Arnold V., Mathematical Methods of Classical Mechanics, Springer–Verlag, Berlin–Heidelberg–New York, 1978 | MR

[BaS] Bayer D. and Stillman M., “Macaulay” computer program for finding algebra resolutions, 1984

[Beau] Beauville A., “Variétés kählériennes dont la première classe de Chern est nulle”, J. Differential Geometry, 18 (1983), 755–782 | MR | Zbl

[Bog] Bogomolov F., “On the decomposition theorem of Kähler manifolds with trivial canonical class”, Math. Sbornik USSR, 22 (1974), 580–583 | DOI | MR

[BrGS] Briançon J., Granger M. and Speder J.P., “Schéma de Hilbert d'une courbe plane”, Ann. Sci. Ecole Norm. Sup. (4), 14 (1981), 1–25 | MR | Zbl

[DS] D'Souza C., “Compactification of Generalized Jacobians”, Proc. Indian Acad. Sci., A88 (1979), 419–457 | MR

[EGA-III] Grothendiek A. (with Dieudonné J.), Eléments de Géométrie Algébrique. III: Étude cohomologique des faisceaux cohérents, Publ. Math. IHES, 11, 1961; 17, 1963

[Fu] Fujiki A., “On primitively symplectic compact Kähler $V$-manifolds of dimension four”, Classification of Algebraic and Analytic Manifolds, Katata Symp. Proc. (1982), Progr. Math., 39, Birkhäuser, Boston–Basel–Stuttgart, 1983, 71–250 | MR

[Gr] Griffiths P., “Periods of integrals on algebraic manifolds. III”, Publ. Math. IHES., 38 (1970), 125–180 | MR | Zbl

[GrHa] Griffiths P. and Harris J., Principles of Algebraic Geometry, J. Wiley Sons, New York, 1978 | MR | Zbl

[Gro] Grothendieck A., “Techniques de construction et théorèmes d'existence en géométrie algébrique. IV: Les Schémas de Hilbert”, Séminaire Bourbaki, 13e année. 1960/61, 221, W.A. Benjamin, New York, 1966

[Har] Hartshorne R., Algebraic Geometry, Grad. Texts Math., 52, Springer–Verlag, Berlin–Heidelberg– New York, 1977 | MR | Zbl

[Ia] Iarrobino A., “Hilbert Scheme of Points: Overview of Last Ten Years”, Algebraic Geometry (Bowdoin, 1985), Proc. Symp. Pure Math., 46, 1987, 297–320 | MR | Zbl

[Kap] Kaplansky I., Commutative Rings, The University of Chicago Press, 1974 | MR

[Katz] Katz N., “The regularity theorem in algebraic geometry”, Actes. Conqr. Int. Math. Nice, 1970, 437–443 | MR

[Kaw-1] Kawamata Y., “Characterization of abelian varieties”, Compos. Math., 43 (1981), 253–276 | MR | Zbl

[Kaw-2] Kawamata Y., “Hodge Theory and Kodiara Dimension”, Algebraic Varieties and Analytic Varieties, Proc. Symp. (Tokyo, 1981), Adv. Studies Pure Math., 1, 1983, 317–328 | MR

[KKMSD] Kempf G., Knudsen F., Mumford D. and Saint-Donat B., Toroidal Embeddings I, Lecture Notes Math., 339, Springer–Verlag, Berlin–Heidelberg–New York, 1973 | MR | Zbl

[Kl] Kleppe H., The Picard scheme of a curve and its compactification, M.I.T. Thesis, 1981

[Ko] Kollár J., “Subadditivity of the Kodaira Dimension: Fibers of General Type”, Algebraic Geometry (Sendai, 1985), Advanced Studies Pure Math., 10, eds. T. Oda, 1987, 361–398 | MR | Zbl

[KoMar] Koniagin S.V. and Markushevich D.G., “Criteria for cyclic quotients of regular and non-degenerate double singular points to be canonical”, Siberian Math. J., 26 (1985), 530–539 | DOI

[Mar] Markushevich D.G., “Integrable sympletic structures on compact complex manifolds”, Math. Sbornik. USSR, 59 (1988), 459–469 | DOI | MR | Zbl

[MM] Mayer A. and Mumford D., “Further comments on boundary points”, Notes of Amer. Math. Soc. Summer Inst. in Algebraic Geometry at Woods Hole, 1964

[Mo] Mori S., “Classification of higher-dimensional varieties”, Algebraic Geometry (Bowdoin, 1985), Proc. Symp. Pure Math., 46, AMS, Providence, RI, 1987 | MR

[Mu] Mukai S., “Symplectic structure of the moduli of sheaves on an abelian or K3 surface”, Invent. Math., 77 (1984), 101–116 | DOI | MR | Zbl

[Mum] Mumford D., “An analytic constuction of degenerating abelian varieties over complete rings”, Compos. Math., 24 (1972), 239–272 | MR | Zbl

[OS] Oda T. and Seshadri S., “Compáctifications of the Generalized Jacobian”, Trans. Amer. Math. Soc., 253 (1979), 1–90 | DOI | MR | Zbl

[R] Rego C.J., “The compactified Jacobian”, Ann. Sci. École Norm. Sup. (4), 13 (1980), 211–223 | MR | Zbl

[Re] Reid M.: Beauville A. (Ed.), “Canonical 3-folds”, Journées de géométrie algébrique d'Angers (1979), Sijthoff Noodhoff, Groningen, 1980, 273–310 | MR

[Sch] Schmid W., “Variation of Hodge structure: the singularities of period mapping”, Invent. Math., 22 (1973), 211–319 | DOI | MR | Zbl

[SGA-1] Grothendieck A., “Revêtements Étales et Groupes Fondamentals”, Séminaire de Géométrie Algébrique de Bois Marie. 1960–61 (SGA-1), Lecture Notes in Math., 224, Springer–Verlag, Berlin–Heidelberg–New York, 1971 | MR | Zbl

[Sha-1] Proc. Steklov Inst. Math., AMS, Providence, R.I., 1967 | MR | Zbl

[Sha-2] Shafarevich I.R., Lectures on minimal models and birational transformations of two-dimensional schemes, Lect. Notes in Math. and Phys., 37, Tata Inst. Fund. Res., Bombay, 1966 | MR | Zbl

[Su] Sung W., Elliptic threefolds with trivial first Chern class, Preprint MPI/91-40, Bonn, 1991

[U] Ueno K., “On algebraic fiber spaces of abelian varieties”, Math. Ann., 237 (1978), 1–22 | DOI | MR | Zbl

[V] Vanhaecke P., “Linearizing two-dimensional integrable systems and the construction of action-angle variables”, Math. Z., 211 (1992), 265–313 | DOI | MR | Zbl

[Vie-1] Viehweg E., “Die Additivität der Kodaira Dimension für projective Faserräume über Varietäten des allgemeinen Typs”, J. reine angew. Math., 330 (1982), 132–142 | MR | Zbl

[Vie-2] Viehweg E., “Weak positivity and the additivity of Kodaira dimension for certain algebraic fiber spaces”, Algebraic Varieties and Analytic Varieties, Proc. of Symp. (Tokyo, 1981), Adv. Studies Pure Math., 1, 1983, 329–353 | MR | Zbl

[YaBo] Yano K. and Bochner S., Curvature and Betti Numbers, Ann. of Math. Studies, 32, Princeton Univ. Press, Princeton–N. J., 1953 | MR | Zbl

[Yau] Yau S.T., “On Calabi's conjecture and some new results in algebraic geometry”, Proc. Nat. Acad. Sci. USA, 74 (1977), 1798–1799 | DOI | MR | Zbl

[Zuo] Zuo K., “The moduli spaces of some rank 2 stable vector bundles over algebraic K3 surfaces”, Duke Math. J., 64 (1991), 403–408 | DOI | MR | Zbl