Canonical spin polynomials of an algebraic surface.~I
Izvestiya. Mathematics , Tome 45 (1995) no. 3, pp. 577-621.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper spin canonical invariants of algebraic surfaces are constructed. The problem of computing these invariants is reduced to a problem in algebraic geometry.
@article{IM2_1995_45_3_a7,
     author = {A. N. Tyurin},
     title = {Canonical spin polynomials of an algebraic {surface.~I}},
     journal = {Izvestiya. Mathematics },
     pages = {577--621},
     publisher = {mathdoc},
     volume = {45},
     number = {3},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_45_3_a7/}
}
TY  - JOUR
AU  - A. N. Tyurin
TI  - Canonical spin polynomials of an algebraic surface.~I
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 577
EP  - 621
VL  - 45
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_45_3_a7/
LA  - en
ID  - IM2_1995_45_3_a7
ER  - 
%0 Journal Article
%A A. N. Tyurin
%T Canonical spin polynomials of an algebraic surface.~I
%J Izvestiya. Mathematics 
%D 1995
%P 577-621
%V 45
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_45_3_a7/
%G en
%F IM2_1995_45_3_a7
A. N. Tyurin. Canonical spin polynomials of an algebraic surface.~I. Izvestiya. Mathematics , Tome 45 (1995) no. 3, pp. 577-621. http://geodesic.mathdoc.fr/item/IM2_1995_45_3_a7/

[1] E. Arbarello, M. Cornalba, P. A. Griffits, J. Harris, Geometry of Algebraic Curves, Springer-Verlag, New York, 1985 | Zbl

[2] M. F. Atiyah, R. Bott, “The Yang–Mills equations over Riemann surfaces”, Philos. Trans. Roy. Soc. London Ser. A, 308 (1983), 523–615 | DOI | MR | Zbl

[3] M. F. Atiyah, “On analytic surfaces with double points”, Proc. Royal. Soc., A247 (1958), 237–244 | DOI | MR

[4] A. Bertram, “Moduli of rank 2 vector bundles,theta divisors and the geometry curves in projective space”, J. Diff. Geom., 35 (1992), 429–469 | MR | Zbl

[5] F. A. Bogomolov, “Stabilnye vektornye rassloeniya na proektivnykh poverkhnostyakh”, Matem. sb., 185:4 (1994), 3–26 | MR | Zbl

[6] E. Brieskorn, “Rationale Singularitaten Komplexen Flachen”, Invent. Math., 4 (1968), 336–358 | DOI | MR | Zbl

[7] F. Catanese, “Connected components of moduli spaces”, J. Diff. Geom., 24 (1986), 395–399 | MR | Zbl

[8] S. Donaldson, “Polynomial invariants for smooth 4-manifolds”, Topology, 29 (1990), 257–315 | DOI | MR | Zbl

[9] S. Donaldson, Differential topology and complex variables, Arbeitstagung Proceedings, 1990

[10] S. Donaldson, P. Kronheimer, The Geometry of Four-Manifolds, Clarendon Press, Oxford, 1990 | MR | Zbl

[11] G. Ellingsrud, Another proof of the irreducibility of the punctual Hilbert schemes of a smooth surface, Preprint / Berlin, 1991 | Zbl

[12] R. Fintushel, R. J. Stern, Surgery in cusp neighborhoods and the Geography of irreducible 4-manifolds, Preprint/UGLA, 1992 | MR | Zbl

[13] D. Freed, K. Uhlenbeck, Instantons and four-manifolds, M.S.R.I. Springer, N. Y., 1988

[14] R. Friedman, J. W. Morgan, “On the diffeomorphism type of certain algebraic surfaces. II”, J. Diff. Geom., 27 (1988), 371–398 | MR | Zbl

[15] W. Fulton, Intersection Theory, Springer-Verlag, Oxford, 1987 | MR

[16] D. Gieseker, “On the moduli of vector bundles on an algebraic surface”, Ann. of Math., 106 (1977), 45–60 | DOI | MR | Zbl

[17] Y. Hu, “The geometric and topology of quotient varieties of torus actions”, Duke Math. J., 68 (1992), 151–183 | DOI | MR

[18] R. C. Kirby, “Problems in low-dimensional manifold theory”, Algebraic and geometric topology, Part 2 (Stanford Univ., Stanford, Calif., 1976), Proc. Sympos. Pure Math., 32, Amer. Math. Soc., Providence, RI, 1978, 273–312 | MR

[19] D. Kotshick, “$SO(3)$-invariants for 4-manifolds with $b^+_2=1$”, Proc. London Math. Soc., 3:63 (1991), 426–448 | DOI

[20] P. B. Kronheimer, “The genus-minimizing property of algebraic curves”, Bull. Amer. Math. Soc. (N.S.), 29:1 (1993), 63–69 | DOI | MR | Zbl

[21] P. B. Kronheimer, An obstruction to removing intersection points in immersed surfaces, Preprint, Oxford, 1993 | MR

[22] J. Morgan, Comparison ofthe Donaldson polynomial invariants with their algebro-geometric analogues, Preprint, Princeton, 1992

[23] S. Mukai, “Symplectic structure of the moduli space of sheaves on an abelian or $K3$ surface”, Invent. Math., 77 (1984), 101–116 | DOI | MR | Zbl

[24] S. Mukai, “On the moduli space of bundles on $K3$ surfaces. I”, Vector bundles on algebraic varieties, Bombay, 1987 | MR

[25] M. Maruyama, “Moduli of stable sheaves. II”, J. Math. Kyoto Univ., 18 (1978), 557–614 | MR | Zbl

[26] J. W. Morgan, G. O'Grady, The smooth classification of fake $K3$'s and similar surfaces, Preprint, Princeton, 1992 | MR

[27] M. S. Narasimhan, S. Ramanan, “Moduli of vector bundles on a compact Riemann surface”, Ann. of Math., 89 (1969), 19–51 | DOI | MR

[28] P. E. Newstead, “Stable bundles of rank 2 and odd degree over a curve of genus 2”, Topology, 7 (1968), 205–215 | DOI | MR | Zbl

[29] V. Pidstrigach, “Spin polynomial invariants and walls structure”, Matem. Gottingensis. Geometry and Analysis, 1994 | Zbl

[30] A. N. Tyurin, “Metrika Veilya–Petersona na prostranstve modulei stabilnykh vektornykh rassloenii i puchkov nad algebraicheskoi poverkhnostyu”, Izv. AN SSSR. Ser. matem., 55:3 (1991), 608–630 | MR

[31] V. Ya. Pidstrigach, A. N. Tyurin, “Invarianty gladkoi struktury algebraicheskoi poverkhnosti, zadavaemye operatorom Diraka”, Izv. AN. Ser. matem., 56:2 (1992), 279–371 | MR | Zbl

[32] M. Thaddeus, Stable pairs,linear system and the Verlinde formula, Preprint, Princeton, 1992

[33] A. N. Tyurin, “Algebro-geometricheskie aspekty gladkosti”, UMN, 44 (1989), 93–143 | MR | Zbl

[34] A. N. Tyurin, “Geometriya modulei vektornykh rassloenii”, UMN, 29 (1974), 59–88 | Zbl

[35] A. N. Tyurin, “Simplekticheskie struktury na mnogoobraziyakh modulei vektornykh rassloenii na algebraicheskikh poverkhnostyakh s $p_g>0$”, Izv. AN SSSR. Ser. matem., 52:4 (1988), 813–851 | MR

[36] A. N. Tyurin, “The simple method of distinguishing the underlying differentiable structures of algebraic surfaces”, Mathematica Gottingensis, Sonderforschungsbereichs Geometry and Analysis, Heft 25, 1992, 1–24

[37] A. N. Tyurin, “Spin-polinomialnye invarianty gladkikh struktur na algebraicheskikh poverkhnostyakh”, Izv. AN. Ser matem., 57:2 (1993), 125–164 | MR | Zbl

[38] A. N. Tyurin, “On almost canonical polynomials of algebraic surface”, Proceedings of the Conference “Algebraic Geometry” (Yaroslavl, 1992), Aspects of Mathematics, 1993, 250–275 | MR

[39] A. N. Tyurin, “Canonical and almost canonical spin-polynomials of algebraic surface”, Proceedings of the Conference “Vector Bundles” (Durham, 1993), London Math. Soc. Lecture Note Ser., 208, Cambridge Univ. Press, Cambridge, 1995, 255–281 | MR | Zbl

[40] A. N. Tyurin, “A slight generalization of the theorem of Mehta–Ramanathan”, Lecture Notes in Math., 1479, 1991, 258–272 | MR | Zbl

[41] C. T. C. Wall, “Diffeomorphisms of 4-manifolds”, J. of the London Math. Soc., 39 (1964), 131–140 | DOI | MR | Zbl

[42] S. T. Yau, “Calabi's conjecture and some new results in algebraic geometry”, Proc. Math. Acad. USA, 74 (1977), 1789–1799 | DOI | MR

[43] K. Zuo, Generic smoothness of the moduli of rank two stable bundles over an algebraic surface, Preprint, MPI/90-7