Graphs with projective suborbits. Cases of small characteristics.~II
Izvestiya. Mathematics , Tome 45 (1995) no. 3, pp. 559-576.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is devoted to the positive solution, announced earlier by the author, of the question of the boundedness of the orders of stabilizers of vertices of connected finite symmetric graphs with projective suborbits. We consider the case when the characteristic of the field is equal to 3 and the automorphism group of the graph acts transitively on its 3-arcs. (The case when the characteristic of the field is equal to 3 and the group acts intransitively on 3-arcs of the graph was considered in part I of the article.)
@article{IM2_1995_45_3_a6,
     author = {V. I. Trofimov},
     title = {Graphs with projective suborbits. {Cases} of small {characteristics.~II}},
     journal = {Izvestiya. Mathematics },
     pages = {559--576},
     publisher = {mathdoc},
     volume = {45},
     number = {3},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_45_3_a6/}
}
TY  - JOUR
AU  - V. I. Trofimov
TI  - Graphs with projective suborbits. Cases of small characteristics.~II
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 559
EP  - 576
VL  - 45
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_45_3_a6/
LA  - en
ID  - IM2_1995_45_3_a6
ER  - 
%0 Journal Article
%A V. I. Trofimov
%T Graphs with projective suborbits. Cases of small characteristics.~II
%J Izvestiya. Mathematics 
%D 1995
%P 559-576
%V 45
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_45_3_a6/
%G en
%F IM2_1995_45_3_a6
V. I. Trofimov. Graphs with projective suborbits. Cases of small characteristics.~II. Izvestiya. Mathematics , Tome 45 (1995) no. 3, pp. 559-576. http://geodesic.mathdoc.fr/item/IM2_1995_45_3_a6/

[1] V. I. Trofimov, “Grafy s proektivnymi podorbitami. Sluchai malykh kharakteristik. I”, Izv. AN. Ser. matem., 58:5 (1994), 124–171 | MR | Zbl

[2] R. Weiss, “Graphs with subconstituents containing $L_3(p)$”, Proc. Amer. Math. Soc., 85 (1982), 666–672 | DOI | MR | Zbl

[3] R. Weiss, “Groups with a $(B,N)$-pair and locally transitive graphs”, Nagoya Math. J., 74 (1979), 1–21 | MR | Zbl

[4] R. Weiss, “Symmetric graphs with projective subconstituents”, Proc. Amer. Math. Soc., 72 (1978), 213–217 | DOI | MR | Zbl

[5] R. Weiss, “Über symmetrische Graphen und die projektiven Gruppen”, Arch. Math., 28 (1977), 110–112 | DOI | MR

[6] O. Schreier, B. L. van der Waerden, “Die Automorphismen der projektiven Gruppen”, Abh. Math. Sem. Hamburg Univ., 6 (1928), 231–346

[7] A. Gardiner, “Arc transitivity in graphs”, Quart. J. Math. (2), 24 (1973), 399–407 | DOI | MR | Zbl