Gaussian integrals and spectral theory over a~local field
Izvestiya. Mathematics , Tome 45 (1995) no. 3, pp. 495-503.

Voir la notice de l'article provenant de la source Math-Net.Ru

Vladimirov's methods for computing Gaussian integrals and constructing eigenfunctions of a fractional differentiation operator over the field of $p$-adic numbers is extended to the case of an arbitrary local field with a discrete valuation and characteristic of the residue field different from 2.
@article{IM2_1995_45_3_a2,
     author = {A. N. Kochubei},
     title = {Gaussian integrals and spectral theory over a~local field},
     journal = {Izvestiya. Mathematics },
     pages = {495--503},
     publisher = {mathdoc},
     volume = {45},
     number = {3},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_45_3_a2/}
}
TY  - JOUR
AU  - A. N. Kochubei
TI  - Gaussian integrals and spectral theory over a~local field
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 495
EP  - 503
VL  - 45
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_45_3_a2/
LA  - en
ID  - IM2_1995_45_3_a2
ER  - 
%0 Journal Article
%A A. N. Kochubei
%T Gaussian integrals and spectral theory over a~local field
%J Izvestiya. Mathematics 
%D 1995
%P 495-503
%V 45
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_45_3_a2/
%G en
%F IM2_1995_45_3_a2
A. N. Kochubei. Gaussian integrals and spectral theory over a~local field. Izvestiya. Mathematics , Tome 45 (1995) no. 3, pp. 495-503. http://geodesic.mathdoc.fr/item/IM2_1995_45_3_a2/

[1] V. S. Vladimirov, “$p$-Adic analysis and $p$-adic quantum mechanics”, Ann. New York Acad. Sci. Symposium in Frontiers of Mathematics, New York, 1988

[2] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, “Spektralnaya teoriya v $p$-adicheskoi kvantovoi mekhanike i teorii predstavlenii”, Izv. AN SSSR. Ser. matem., 54:2 (1990), 275–302 | MR | Zbl

[3] B. C. Vladimirov, “Obobschennye funktsii nad polem $p$-adicheskikh chisel”, UMN, 43:5 (1988), 17–53 | MR | Zbl

[4] V. S. Vladimirov, “O spektralnykh svoistvakh $p$-adicheskikh psevdodifferentsialnykh operatorov tipa Shrëdingera”, Izv. AN. Ser. matem., 56:4 (1992), 770–789 | MR | Zbl

[5] V. S. Vladimirov, I. V. Volovich, “$p$-Adic Schrödinger type equation”, Lett. Math. Phys., 18:1 (1989), 43–50 | DOI | MR

[6] V. S. Vladimirov, “O spektre nekotorykh psevdodifferentsialnykh operatorov nad polem $p$-adicheskikh chisel”, Algebra i analiz, 2:6 (1990), 107–124 | MR

[7] A. N. Kochubei, “Operator tipa Shrëdingera nad polem $p$-adicheskikh chisel”, TMF, 86:3 (1991), 323–333 | MR

[8] A. N. Kochubei, “Operator differentsirovaniya na podmnozhestvakh polya $p$-adicheskikh chisel”, Izv. AN. Ser. matem., 56:5 (1992), 1021–1039 | MR

[9] R. S. Ismagilov, “O spektre samosopryazhennogo operatora $L_2(K)$, gde $K$ – lokalnoe pole; analog formuly Feinmana–Katsa”, TMF, 89:1 (1991), 18–24 | MR

[10] A. N. Kochubei, “Parabolicheskie uravneniya nad polem $p$-adicheskikh chisel”, Izv. AN SSSR. Ser. matem., 55:6 (1991), 1312–1330

[11] Dzh. Kassel, A. Frëlikh (eds.), Algebraicheskaya teoriya chisel, Mir, M., 1969

[12] A. Veil, Osnovy teorii chisel, Mir, M., 1972 | MR

[13] I. M. Gelfand, M. I. Graev, I. I. Pyatetskii-Shapiro, Teoriya predstavlenii i avtomorfnye funktsii, Nauka, M., 1966 | MR

[14] P. J. Sally, M. H. Taibleson, “Special functions on locally compact fields”, Acta Math., 116:3–4 (1966), 279–309 | DOI | MR | Zbl

[15] R. Lidl, G. Niderraiter, Konechnye polya, Mir, M., 1988 | Zbl

[16] S. Leng, Algebraicheskie chisla, Mir, M., 1966 | MR