Lower estimates of the widths of the classes of functions defined by a modulus of continuity
Izvestiya. Mathematics , Tome 45 (1995) no. 2, pp. 399-415

Voir la notice de l'article provenant de la source Math-Net.Ru

For kernels $K$ satisfying the condition $B_{2m}$ introduced by the author, lower bounds are found for the Kolmogorov widths of classes of convolutions $K\ast H^\omega$, $\omega$ convex, in the uniform metric. In a number of cases these bounds are sharp.
@article{IM2_1995_45_2_a7,
     author = {V. T. Shevaldin},
     title = {Lower estimates of the widths of the classes of functions defined by a modulus of continuity},
     journal = {Izvestiya. Mathematics },
     pages = {399--415},
     publisher = {mathdoc},
     volume = {45},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_45_2_a7/}
}
TY  - JOUR
AU  - V. T. Shevaldin
TI  - Lower estimates of the widths of the classes of functions defined by a modulus of continuity
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 399
EP  - 415
VL  - 45
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_45_2_a7/
LA  - en
ID  - IM2_1995_45_2_a7
ER  - 
%0 Journal Article
%A V. T. Shevaldin
%T Lower estimates of the widths of the classes of functions defined by a modulus of continuity
%J Izvestiya. Mathematics 
%D 1995
%P 399-415
%V 45
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_45_2_a7/
%G en
%F IM2_1995_45_2_a7
V. T. Shevaldin. Lower estimates of the widths of the classes of functions defined by a modulus of continuity. Izvestiya. Mathematics , Tome 45 (1995) no. 2, pp. 399-415. http://geodesic.mathdoc.fr/item/IM2_1995_45_2_a7/