Graphs with projective suborbits. Cases of small characteristics.~I
Izvestiya. Mathematics , Tome 45 (1995) no. 2, pp. 353-398.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is devoted to a positive solution, announced earlier by the author, of the question of boundedness of orders of stabilizers of vertices of connected finite symmetric graphs with projective suborbits. The case when the characteristic of the field is 3 and the automorphism group of the graph acts intransitively on its 3-arcs is considered. (The case when the characteristic of the field is 3 and the group acts transitively on the 3-arcs of the graph will be considered in Part II of this paper.) In parallel, some cases of a field of characteristic 2 are studied.
@article{IM2_1995_45_2_a6,
     author = {V. I. Trofimov},
     title = {Graphs with projective suborbits. {Cases} of small {characteristics.~I}},
     journal = {Izvestiya. Mathematics },
     pages = {353--398},
     publisher = {mathdoc},
     volume = {45},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_45_2_a6/}
}
TY  - JOUR
AU  - V. I. Trofimov
TI  - Graphs with projective suborbits. Cases of small characteristics.~I
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 353
EP  - 398
VL  - 45
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_45_2_a6/
LA  - en
ID  - IM2_1995_45_2_a6
ER  - 
%0 Journal Article
%A V. I. Trofimov
%T Graphs with projective suborbits. Cases of small characteristics.~I
%J Izvestiya. Mathematics 
%D 1995
%P 353-398
%V 45
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_45_2_a6/
%G en
%F IM2_1995_45_2_a6
V. I. Trofimov. Graphs with projective suborbits. Cases of small characteristics.~I. Izvestiya. Mathematics , Tome 45 (1995) no. 2, pp. 353-398. http://geodesic.mathdoc.fr/item/IM2_1995_45_2_a6/

[1] V. I. Trofimov, “Stabilizatory vershin grafov s proektivnymi podorbitami”, DAN SSSR, 315:3 (1990), 544–546 | MR | Zbl

[2] V. I. Trofimov, “Grafy s proektivnymi podorbitami”, Izv. AN SSSR. Ser. matem., 55:4 (1991), 890–916 | MR

[3] R. Weiss, “Groups with a $(B,N)$-pair and locally transitive graphs”, Nagoya Math. J., 74 (1979), 1–21 | MR | Zbl

[4] O. Schreier, B. L. van der Waerden, “Die Automorphismen der projektiven Gruppen”, Abh. Math. Sem. Hamburg Univ., 6 (1928), 321–346

[5] R. Weiss, “Symmetric graphs with projective subconstituents”, Proc. Amer. Math. Soc., 72 (1978), 213–217 | DOI | MR | Zbl

[6] R. Weiss, “Graphs with subconstituents containing $L_3(p)$”, Proc. Amer. Math. Soc., 85 (1982), 666–672 | DOI | MR | Zbl

[7] V. I. Trofimov, “Grafy s proektivnymi podorbitami. Sluchai malykh kharakteristik. II”, Izv. AN. Ser. matem., 58:6 (1994), 137–156 | MR | Zbl

[8] V. I. Trofimov, “More on the vertex stabilizers of the symmetric graphs with projective subconstituents”, Internat. Conf. Algebr. Combin., Abstracts, Vladimir, 1991, 36–37 | MR

[9] R. Weiss, “Distance-transitive graphs and generalized polygons”, Arch. Math., 45 (1985), 186–192 | DOI | MR | Zbl

[10] M. Liebeck, “The affine permutation groups of rank three”, Proc. London Math. Soc. (3), 54 (1987), 477–516 | DOI | MR | Zbl

[11] J. McLaughlin, “Some groups generated by transvections”, Arch. Math., 18 (1967), 364–368 | DOI | MR | Zbl

[12] R. Niles, “Pushing-up in finite groups”, J. Algebra, 57 (1979), 26–63 | DOI | MR | Zbl

[13] R. Griess, “The splitting of extensions of $SL(3,3)$ by the vector space $\mathbf F^3$”, Pacific J. Math., 63 (1976), 405–410 | MR

[14] F. Timmesfeld, Amalgams with rank 2 groups of Lie-type in characteristic 2, Preprint, Justus-Liebig-Universität Giessen Mathematisches Institut