Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1995_45_2_a6, author = {V. I. Trofimov}, title = {Graphs with projective suborbits. {Cases} of small {characteristics.~I}}, journal = {Izvestiya. Mathematics }, pages = {353--398}, publisher = {mathdoc}, volume = {45}, number = {2}, year = {1995}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1995_45_2_a6/} }
V. I. Trofimov. Graphs with projective suborbits. Cases of small characteristics.~I. Izvestiya. Mathematics , Tome 45 (1995) no. 2, pp. 353-398. http://geodesic.mathdoc.fr/item/IM2_1995_45_2_a6/
[1] V. I. Trofimov, “Stabilizatory vershin grafov s proektivnymi podorbitami”, DAN SSSR, 315:3 (1990), 544–546 | MR | Zbl
[2] V. I. Trofimov, “Grafy s proektivnymi podorbitami”, Izv. AN SSSR. Ser. matem., 55:4 (1991), 890–916 | MR
[3] R. Weiss, “Groups with a $(B,N)$-pair and locally transitive graphs”, Nagoya Math. J., 74 (1979), 1–21 | MR | Zbl
[4] O. Schreier, B. L. van der Waerden, “Die Automorphismen der projektiven Gruppen”, Abh. Math. Sem. Hamburg Univ., 6 (1928), 321–346
[5] R. Weiss, “Symmetric graphs with projective subconstituents”, Proc. Amer. Math. Soc., 72 (1978), 213–217 | DOI | MR | Zbl
[6] R. Weiss, “Graphs with subconstituents containing $L_3(p)$”, Proc. Amer. Math. Soc., 85 (1982), 666–672 | DOI | MR | Zbl
[7] V. I. Trofimov, “Grafy s proektivnymi podorbitami. Sluchai malykh kharakteristik. II”, Izv. AN. Ser. matem., 58:6 (1994), 137–156 | MR | Zbl
[8] V. I. Trofimov, “More on the vertex stabilizers of the symmetric graphs with projective subconstituents”, Internat. Conf. Algebr. Combin., Abstracts, Vladimir, 1991, 36–37 | MR
[9] R. Weiss, “Distance-transitive graphs and generalized polygons”, Arch. Math., 45 (1985), 186–192 | DOI | MR | Zbl
[10] M. Liebeck, “The affine permutation groups of rank three”, Proc. London Math. Soc. (3), 54 (1987), 477–516 | DOI | MR | Zbl
[11] J. McLaughlin, “Some groups generated by transvections”, Arch. Math., 18 (1967), 364–368 | DOI | MR | Zbl
[12] R. Niles, “Pushing-up in finite groups”, J. Algebra, 57 (1979), 26–63 | DOI | MR | Zbl
[13] R. Griess, “The splitting of extensions of $SL(3,3)$ by the vector space $\mathbf F^3$”, Pacific J. Math., 63 (1976), 405–410 | MR
[14] F. Timmesfeld, Amalgams with rank 2 groups of Lie-type in characteristic 2, Preprint, Justus-Liebig-Universität Giessen Mathematisches Institut