Generalization of the Bruhat decomposition
Izvestiya. Mathematics, Tome 45 (1995) no. 2, pp. 339-352
Cet article a éte moissonné depuis la source Math-Net.Ru
The problem of describing adjacency on the set of orbits of a Borel subgroup $B$ of a reductive group $G$ acting on a spherical variety (that is, a $G$-variety with a finite number of $B$-orbits) is considered. The adjacency relation on the set of $B$-orbits generalizes the classical Bruhat order on the Weyl group. For a special class of homogeneous spherical varieties $G/H$, where $H$ is a product of a maximal torus and the commutator subgroup of a maximal unipotent subgroup of the group $G$, a satisfactory description of the set of $B$-orbits with adjacency relation is obtained.
@article{IM2_1995_45_2_a5,
author = {D. A. Timashev},
title = {Generalization of the {Bruhat} decomposition},
journal = {Izvestiya. Mathematics},
pages = {339--352},
year = {1995},
volume = {45},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1995_45_2_a5/}
}
D. A. Timashev. Generalization of the Bruhat decomposition. Izvestiya. Mathematics, Tome 45 (1995) no. 2, pp. 339-352. http://geodesic.mathdoc.fr/item/IM2_1995_45_2_a5/
[1] A. Borel, Lineinye algebraicheskie gruppy, Mir, M., 1972 | MR | Zbl
[2] N. Burbaki, Gruppy i algebry Li, gl. 4–6, Mir, M., 1972 | MR | Zbl
[3] E. B. Vinberg, “Slozhnost deistvii reduktivnykh grupp”, Funkts. analiz i ego prilozh., 20:1 (1986), 1–13 | MR | Zbl
[4] Dzh. Khamfri, Lineinye algebraicheskie gruppy, Mir, M., 1980
[5] A. Borel, J. Tits, “Compléments a l'article “Groupes r6ductifs””, Publ. Math. IHES, 1972, no. 41, 253–276 | MR | Zbl
[6] R. W. Richardson, T. A. Springer, The Bruhat order on symmetric varieties, Preprint No 597, University of Utrecht, 1989 | MR
[7] T. A. Springer, Linear algebraic groups, Bikrhäuser, Boston, 1981 | MR