Generalization of the Bruhat decomposition
Izvestiya. Mathematics , Tome 45 (1995) no. 2, pp. 339-352.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of describing adjacency on the set of orbits of a Borel subgroup $B$ of a reductive group $G$ acting on a spherical variety (that is, a $G$-variety with a finite number of $B$-orbits) is considered. The adjacency relation on the set of $B$-orbits generalizes the classical Bruhat order on the Weyl group. For a special class of homogeneous spherical varieties $G/H$, where $H$ is a product of a maximal torus and the commutator subgroup of a maximal unipotent subgroup of the group $G$, a satisfactory description of the set of $B$-orbits with adjacency relation is obtained.
@article{IM2_1995_45_2_a5,
     author = {D. A. Timashev},
     title = {Generalization of the {Bruhat} decomposition},
     journal = {Izvestiya. Mathematics },
     pages = {339--352},
     publisher = {mathdoc},
     volume = {45},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_45_2_a5/}
}
TY  - JOUR
AU  - D. A. Timashev
TI  - Generalization of the Bruhat decomposition
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 339
EP  - 352
VL  - 45
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_45_2_a5/
LA  - en
ID  - IM2_1995_45_2_a5
ER  - 
%0 Journal Article
%A D. A. Timashev
%T Generalization of the Bruhat decomposition
%J Izvestiya. Mathematics 
%D 1995
%P 339-352
%V 45
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_45_2_a5/
%G en
%F IM2_1995_45_2_a5
D. A. Timashev. Generalization of the Bruhat decomposition. Izvestiya. Mathematics , Tome 45 (1995) no. 2, pp. 339-352. http://geodesic.mathdoc.fr/item/IM2_1995_45_2_a5/

[1] A. Borel, Lineinye algebraicheskie gruppy, Mir, M., 1972 | MR | Zbl

[2] N. Burbaki, Gruppy i algebry Li, gl. 4–6, Mir, M., 1972 | MR | Zbl

[3] E. B. Vinberg, “Slozhnost deistvii reduktivnykh grupp”, Funkts. analiz i ego prilozh., 20:1 (1986), 1–13 | MR | Zbl

[4] Dzh. Khamfri, Lineinye algebraicheskie gruppy, Mir, M., 1980

[5] A. Borel, J. Tits, “Compléments a l'article “Groupes r6ductifs””, Publ. Math. IHES, 1972, no. 41, 253–276 | MR | Zbl

[6] R. W. Richardson, T. A. Springer, The Bruhat order on symmetric varieties, Preprint No 597, University of Utrecht, 1989 | MR

[7] T. A. Springer, Linear algebraic groups, Bikrhäuser, Boston, 1981 | MR