On~the~regularity of the solutions of the Neumann problem for quasilinear parabolic systems
Izvestiya. Mathematics , Tome 45 (1995) no. 2, pp. 231-253

Voir la notice de l'article provenant de la source Math-Net.Ru

Partial regularity is proved of the generalized solution $u\colon\mathbf\Omega\times(0,T)\to\mathbf R^N$, $\mathbf\Omega\subset\mathbf R^n$, $n>2$, $N>1$, of a quasilinear parabolic system with nonsmooth conormal derivative. It is assumed that the functions forming the system and the boundary condition have controlled orders of nonlinearities, and their singularities are anisotropic with respect to the spatial variables and time. $L_p$-estimates of the gradient of $u$ in a neighborhood of $\partial\mathbf\Omega\times(0,T)$ are preliminarily deduced.
@article{IM2_1995_45_2_a0,
     author = {A. A. Arkhipova},
     title = {On~the~regularity of the solutions of the {Neumann} problem for quasilinear parabolic systems},
     journal = {Izvestiya. Mathematics },
     pages = {231--253},
     publisher = {mathdoc},
     volume = {45},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_45_2_a0/}
}
TY  - JOUR
AU  - A. A. Arkhipova
TI  - On~the~regularity of the solutions of the Neumann problem for quasilinear parabolic systems
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 231
EP  - 253
VL  - 45
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_45_2_a0/
LA  - en
ID  - IM2_1995_45_2_a0
ER  - 
%0 Journal Article
%A A. A. Arkhipova
%T On~the~regularity of the solutions of the Neumann problem for quasilinear parabolic systems
%J Izvestiya. Mathematics 
%D 1995
%P 231-253
%V 45
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_45_2_a0/
%G en
%F IM2_1995_45_2_a0
A. A. Arkhipova. On~the~regularity of the solutions of the Neumann problem for quasilinear parabolic systems. Izvestiya. Mathematics , Tome 45 (1995) no. 2, pp. 231-253. http://geodesic.mathdoc.fr/item/IM2_1995_45_2_a0/