On~the~regularity of the solutions of the Neumann problem for quasilinear parabolic systems
Izvestiya. Mathematics , Tome 45 (1995) no. 2, pp. 231-253.

Voir la notice de l'article provenant de la source Math-Net.Ru

Partial regularity is proved of the generalized solution $u\colon\mathbf\Omega\times(0,T)\to\mathbf R^N$, $\mathbf\Omega\subset\mathbf R^n$, $n>2$, $N>1$, of a quasilinear parabolic system with nonsmooth conormal derivative. It is assumed that the functions forming the system and the boundary condition have controlled orders of nonlinearities, and their singularities are anisotropic with respect to the spatial variables and time. $L_p$-estimates of the gradient of $u$ in a neighborhood of $\partial\mathbf\Omega\times(0,T)$ are preliminarily deduced.
@article{IM2_1995_45_2_a0,
     author = {A. A. Arkhipova},
     title = {On~the~regularity of the solutions of the {Neumann} problem for quasilinear parabolic systems},
     journal = {Izvestiya. Mathematics },
     pages = {231--253},
     publisher = {mathdoc},
     volume = {45},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_45_2_a0/}
}
TY  - JOUR
AU  - A. A. Arkhipova
TI  - On~the~regularity of the solutions of the Neumann problem for quasilinear parabolic systems
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 231
EP  - 253
VL  - 45
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_45_2_a0/
LA  - en
ID  - IM2_1995_45_2_a0
ER  - 
%0 Journal Article
%A A. A. Arkhipova
%T On~the~regularity of the solutions of the Neumann problem for quasilinear parabolic systems
%J Izvestiya. Mathematics 
%D 1995
%P 231-253
%V 45
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_45_2_a0/
%G en
%F IM2_1995_45_2_a0
A. A. Arkhipova. On~the~regularity of the solutions of the Neumann problem for quasilinear parabolic systems. Izvestiya. Mathematics , Tome 45 (1995) no. 2, pp. 231-253. http://geodesic.mathdoc.fr/item/IM2_1995_45_2_a0/

[1] M. Giaquinta, G. Modica, “Local existence for quasilinear parabolic systems under nonlinear boundary condition”, Ann. di Matera. Para et Applic., 149 (1987), 41–59 | DOI | MR | Zbl

[2] J. Stara, O. John, J. Muly, “Counter example to the regularity of weak solution of the quasilinear parabolic system”, Comment. Mathem. Univ. Carolinae, 27:1 (1986), 123–126 | MR

[3] M. Giaquinta, “A counterexample to the boundary regularity of solutions to elliptic quasilinear systems”, Manuscripta Math., 26 (1978), 217–220 | DOI | MR

[4] S. Campanato, “Partial Hölder continuity of solutions of quasilinear parabolic systems of the second order with linear growth”, Rend. Sem. Mat. Univ. Padova, 64 (1981), 59–75 | MR | Zbl

[5] S. Campanato, “$L_p$-regularity and partial Hölder continuity for solutions of second order parabolic systems with strictly controlled growth”, Ann. Mat. Pura Appl., 78 (1980) | MR

[6] S. Campanato, “On the nonlinear parabolic systems in divergence form. Hölder continuity and partial Hölder continuity of the solutions”, Ann. Mat. Pura Appl., 137 (1984), 83–122 | DOI | MR | Zbl

[7] M. Giaquinta, M. Struwe, “On the partial regularity of weak solutions of nonlinear parabolic systems”, Math. Z., 179 (1982), 437–451 | DOI | MR | Zbl

[8] S. Campanato, “$L_p$-regularity for weak solutions of parabolic systems”, Ann. S.N.S. Pisa, 7:4 (1980), 65–85 | MR | Zbl

[9] A. A. Arkhipova, “Obratnye neravenstva Geldera v parabolicheskikh zadachakh s anizotropnymi prostranstvami dannykh”, Tr. in-ta matematiki, 24, SO RAN, Novosibirsk, 1994, 3–19 | MR | Zbl

[10] A. A. Arkhipova, “$L_p$-otsenki gradientov reshenii nachalno-kraevykh zadach dlya kvazilineinykh parabolicheskikh sistem”, Problemy matem. analiza, 13, SPbU, 1992, 5–18 | MR

[11] A. A. Arkhipova, “Obratnye neravenstva Geldera s granichnym integralom i $L_p$-otsenki v zadachakh s usloviem Neimana”, Nekotorye prilozheniya funktsionalnogo analiza k zadacham matematicheskoi fiziki, SO AN SSSR, Novosibirsk, 1989, 3–20 | MR

[12] A. A. Arkhipova, “Nekotorye prilozheniya obratnykh neravenstv Geldera s granichnym integralom”, Problemy matem. analiza, 12, SPbU, 1992, 13–29

[13] A. A. Arkhipova, “Chastichnaya regulyarnost reshenii kvazilineinykh ellipticheskikh sistem s negladkim usloviem na konormalnuyu proizvodnuyu”, Matem. sb., 184:2 (1993), 87–104 | Zbl

[14] A. A. Arkhipova, Reverse Hölder inequalities with boundary integrals and $L_p$-estimates for solutions of elliptic and parabolic nonlinear boundary-value problems, Preprint No 93-123, Case Western Reserve Univ, Cleveland. USA, 1993

[15] M. Giaquinta, G. Modica, “Nonlinear systems of the type of the stationary Navie–Stokes systems”, J. für die reine und Angew. Math., 330 (1982), 173–214 | MR | Zbl

[16] A. A. Arkhipova, On the Neumann problem for quasilinear parabolic systems under controllable growth conditions. I. $L_p$-regularity results, Preprint No 93-127, Case Western Reserve Univ., Cleveland. USA, 1993

[17] A. A. Arkhipova, On the Neumann problem for quasilinear parabolic systems under controllable growth conditions. II. Partial Hölder continuity of the solutions, Preprint No 93-128, Case Western Reserve Univ., Cleveland. USA, 1993

[18] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[19] S. Campanato, “Equazioni paraboliche det secondo ordine $\operatorname e$ spazi $\mathscr L^{(2,\theta)}(\Omega,\delta)$”, Ann. Mat. Pura Appl., 73 (1966), 55–102 | DOI | MR | Zbl

[20] M. Giaquinta, G. Modica, “Regularity results for some classes of higher order nonlinear elliptic systems”, J. reine angew. Math., 311/312 (1979), 145–169 | MR | Zbl

[21] G. Da Prato, “Spazi $\mathscr L^{(p,\theta)}(\Omega,\delta)$ e loro proprieta”, Ann. Mat. Pura Appl., 69 (1965), 383–392 | DOI | MR | Zbl

[22] M. Giaquinta, M. Giusti, “Partial regularity for the solutions to nonlinear parabolic systems”, Ann. di Matem. Pura e Appl., 47 (1973), 253–266 | DOI | MR

[23] M. Marino, A. Maugeri, “Partial Hölder Continuity of Solutions of Nonlinear Parabolic Systems of Second Order with Quadratic Growth”, Boll. U.M.I. Ser. VII, 3-B:2 (1989), 397–435 | MR | Zbl