On~deformations of nonsmooth optimization problems having an isolated extremal
Izvestiya. Mathematics , Tome 45 (1995) no. 1, pp. 187-195
Voir la notice de l'article provenant de la source Math-Net.Ru
A deformation method is presented for investigating optimization problems with Lipschitz functionals on a Banach space. A deformation minimum principle is proved: under a special nondegenerate deformation of an optimization problem the property of being a local minimum point is preserved for an extremal if the corresponding extremal of the standard problem had that property.
@article{IM2_1995_45_1_a8,
author = {V. I. Skalyga},
title = {On~deformations of nonsmooth optimization problems having an isolated extremal},
journal = {Izvestiya. Mathematics },
pages = {187--195},
publisher = {mathdoc},
volume = {45},
number = {1},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1995_45_1_a8/}
}
V. I. Skalyga. On~deformations of nonsmooth optimization problems having an isolated extremal. Izvestiya. Mathematics , Tome 45 (1995) no. 1, pp. 187-195. http://geodesic.mathdoc.fr/item/IM2_1995_45_1_a8/