On~$n$-widths, optimal quadrature formulas, and optimal recovery of functions analytic in a~strip
Izvestiya. Mathematics , Tome 45 (1995) no. 1, pp. 55-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $H_\infty(D_H)$ be the space of bounded analytic functions in the strip $D_H:=\{z\in\mathbf C:|\operatorname{Im} z|$. We denote by $\widetilde H_\infty(D_H)$ the set of $2\pi$-periodic functions in $H_\infty(D_H)$, and by $\widetilde H_\infty^{\mathbf R}(D_H)$ the set of functions in $\widetilde H_\infty(D_H)$ that are real on the real axis. For a normed linear space $X$ we set $BX:=\{x\in X:\|x\|\leqslant1\}$. In this paper the exact values of the Kolmogorov $n$-widths $d_{2n}(B\widetilde H_\infty^{\mathbf R}(D_H), L_q[0,2\pi])$, are found for all $1\leqslant q\leqslant\infty$, an optimal quadrature formula is constructed for the class $B\widetilde H_\infty (D_H)$ by using the values of functions defined with an error and it is proved that the unique (to within a shift) optimal system of nodes is given by a uniform net. In addition to this, a number of problems are solved for the optimal recovery of functions and their derivatives in the class $BH_\infty(D_H)$.
@article{IM2_1995_45_1_a2,
     author = {K. Yu. Osipenko},
     title = {On~$n$-widths, optimal quadrature formulas, and optimal recovery of functions analytic in a~strip},
     journal = {Izvestiya. Mathematics },
     pages = {55--78},
     publisher = {mathdoc},
     volume = {45},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_45_1_a2/}
}
TY  - JOUR
AU  - K. Yu. Osipenko
TI  - On~$n$-widths, optimal quadrature formulas, and optimal recovery of functions analytic in a~strip
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 55
EP  - 78
VL  - 45
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_45_1_a2/
LA  - en
ID  - IM2_1995_45_1_a2
ER  - 
%0 Journal Article
%A K. Yu. Osipenko
%T On~$n$-widths, optimal quadrature formulas, and optimal recovery of functions analytic in a~strip
%J Izvestiya. Mathematics 
%D 1995
%P 55-78
%V 45
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_45_1_a2/
%G en
%F IM2_1995_45_1_a2
K. Yu. Osipenko. On~$n$-widths, optimal quadrature formulas, and optimal recovery of functions analytic in a~strip. Izvestiya. Mathematics , Tome 45 (1995) no. 1, pp. 55-78. http://geodesic.mathdoc.fr/item/IM2_1995_45_1_a2/

[1] Sun Yongsheng, “On optimal interpolation for differentiable function class (1)”, Approxim. Theory and Appl., 2:4 (1986), 49–54 | MR | Zbl

[2] K. Yu. Osipenko, M. I. Stesin, “Optimalnoe vosstanovlenie proizvodnykh ogranichennykh analiticheskikh i garmonicheskikh funktsii po netochnym dannym”, Matem. zametki, 53:5 (1993), 87–97 | MR | Zbl

[3] Yu. N. Subbotin, “Ekstremalnye zadachi teorii priblizheniya funktsii pri nepolnoi informatsii”, Tr. Matem. in-ta AN SSSR, 145, 1980, 152–168 | MR | Zbl

[4] A. Pinkus, $n$-widths in approximation theory, Springer, Berlin, 1985 | MR

[5] V. M. Tikhomirov, “Teoriya priblizhenii”, Sovremennye problemy matematiki. Fundamentalnye napravleniya, Itogi nauki i tekhn., 14, VINITI AN SSSR, M., 1987, 103–260 | MR

[6] G. G. Magaril-Ilyaev, K. Yu. Osipenko, “Ob optimalnom vosstanovlenii funktsionalov po netochnym dannym”, Matem. zametki, 50:6 (1991), 85–93 | MR

[7] K. Yu. Osipenko, M. I. Stesin, “O zadachakh vosstanovleniya v prostranstvakh Khardi i Bergmana”, Matem. zametki, 49:4 (1991), 95–104 | MR | Zbl

[8] K. Yu. Osipenko, “Nailuchshie i optimalnye metody vosstanovleniya na klassakh garmonicheskikh funktsii”, Matem. sb., 182:5 (1991), 723–745 | MR

[9] K. Yu. Osipenko, M. I. Stesin, “O nekotorykh zadachakh optimalnogo vosstanovleniya analiticheskikh i garmonicheskikh funktsii po netochnym dannym”, Sib. matem. zhurn., 34:3 (1993), 144–160 | MR | Zbl

[10] K. Wilderotter, Optimale Algorithmen zur Approximation analytischer Functionen, Dissertation, Bonn, 1990 | MR | Zbl

[11] S. D. Fisher, C. A. Micchelli, “The $n$-width of sets of analytic functions”, Duke Math. J., 47:4 (1980), 789–801 | DOI | MR | Zbl

[12] N. I. Akhiezer, Elementy teorii ellipticheskikh funktsii, Nauka, M, 1970 | MR | Zbl

[13] A. Pinkus, “On $n$-widths of periodic functions”, J. Analyse Math., 35 (1979), 209–235 | DOI | MR | Zbl

[14] W. Forst, “Über die Brite von Klassen holomorpher periodisher Funktionen”, J. Approx. Theory, 19 (1977), 325–331 | DOI | MR | Zbl

[15] M. P. Ovchintsev, “Nailuchshii metod priblizheniya regulyarnykh ogranichennykh funktsii v koltse po ikh znacheniyam v zadannykh tochkakh”, Izv. VUZov. Matematika, 1989, no. 5, 32–39 | MR

[16] Dzh. Garnett, Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR

[17] P. L. Duren, Theory of $H^p$ spaces, Acad. Press, N.Y., 1970 | MR

[18] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR

[19] Sun Yongsheng, “Optimal interpolation on a convolution class of functions”, Chinese Sci. Bull., 34:14 (1989), 1148–1152 | MR | Zbl