On~the~distribution in the~arithmetic progressions of reducible quadratic polynomials
Izvestiya. Mathematics , Tome 45 (1995) no. 1, pp. 215-228
Voir la notice de l'article provenant de la source Math-Net.Ru
By using Weil's estimate for Kloosterman sums, we obtain a result about the distribution of the sequence $n(n+2)$, beyond the classical level, when a bilinear form with support over pairs of prime moduli is considered. We also obtain an analogous result in the case of a trilinear form, but only by using the recent results for sums of Kloosterman sums of Deshouillers–Iwaniec. Furthermore the method is extended to consider general quadratic reducible polynomials.
@article{IM2_1995_45_1_a11,
author = {S. Salerno and A. Vitolo},
title = {On~the~distribution in the~arithmetic progressions of reducible quadratic polynomials},
journal = {Izvestiya. Mathematics },
pages = {215--228},
publisher = {mathdoc},
volume = {45},
number = {1},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1995_45_1_a11/}
}
TY - JOUR AU - S. Salerno AU - A. Vitolo TI - On~the~distribution in the~arithmetic progressions of reducible quadratic polynomials JO - Izvestiya. Mathematics PY - 1995 SP - 215 EP - 228 VL - 45 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1995_45_1_a11/ LA - en ID - IM2_1995_45_1_a11 ER -
S. Salerno; A. Vitolo. On~the~distribution in the~arithmetic progressions of reducible quadratic polynomials. Izvestiya. Mathematics , Tome 45 (1995) no. 1, pp. 215-228. http://geodesic.mathdoc.fr/item/IM2_1995_45_1_a11/