Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1995_45_1_a10, author = {V. Yu. Baranovsky}, title = {Cohomology ring of the moduli space of stable bundles with an odd determinant}, journal = {Izvestiya. Mathematics }, pages = {207--213}, publisher = {mathdoc}, volume = {45}, number = {1}, year = {1995}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1995_45_1_a10/} }
V. Yu. Baranovsky. Cohomology ring of the moduli space of stable bundles with an odd determinant. Izvestiya. Mathematics , Tome 45 (1995) no. 1, pp. 207-213. http://geodesic.mathdoc.fr/item/IM2_1995_45_1_a10/
[1] M. F. Atiyah, R. H. Bott, “The Yang–Mills Equations over Riemann Surfaces”, Phil. Trans. R. Soc. Lond., 308 (1982), 523–615 | DOI | MR
[2] U. V. Desale, S. Ramanan, “Classification of Vector Bundles of Rank 2 on Hyperelliptic Curves”, Invent. Math., 38:2 (1976), 161–185 | DOI | MR | Zbl
[3] W. Fulton, Intersection Theory, Springer-Verlag, Berlin–Heidelberg, 1984 ; U. Fulton, Teoriya peresechenii, Mir, M., 1989 | MR | Zbl | MR
[4] Y. Laszlo, “La dimension de l'espace des sections du diviseur thêta généralisé”, Bull. Soc. Math. France, 119:3 (1991), 293–306 | MR | Zbl
[5] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Univ. Press, 1979 ; I. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1985 | MR | MR
[6] M. Thaddeus, “Conformal field theory and the cohomology of the moduli space of stable bundles”, J. Differential Geom., 35:1 (1992), 131–149 | MR | Zbl