Cohomology ring of the moduli space of stable bundles with an odd determinant
Izvestiya. Mathematics , Tome 45 (1995) no. 1, pp. 207-213.

Voir la notice de l'article provenant de la source Math-Net.Ru

The multiplicative structure of the cohomology ring of the moduli variety of stable bundles of rank 2 with a fixed odd determinant on a smooth projective complex curve is computed.
@article{IM2_1995_45_1_a10,
     author = {V. Yu. Baranovsky},
     title = {Cohomology ring of the moduli space of stable bundles with an odd determinant},
     journal = {Izvestiya. Mathematics },
     pages = {207--213},
     publisher = {mathdoc},
     volume = {45},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_45_1_a10/}
}
TY  - JOUR
AU  - V. Yu. Baranovsky
TI  - Cohomology ring of the moduli space of stable bundles with an odd determinant
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 207
EP  - 213
VL  - 45
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_45_1_a10/
LA  - en
ID  - IM2_1995_45_1_a10
ER  - 
%0 Journal Article
%A V. Yu. Baranovsky
%T Cohomology ring of the moduli space of stable bundles with an odd determinant
%J Izvestiya. Mathematics 
%D 1995
%P 207-213
%V 45
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_45_1_a10/
%G en
%F IM2_1995_45_1_a10
V. Yu. Baranovsky. Cohomology ring of the moduli space of stable bundles with an odd determinant. Izvestiya. Mathematics , Tome 45 (1995) no. 1, pp. 207-213. http://geodesic.mathdoc.fr/item/IM2_1995_45_1_a10/

[1] M. F. Atiyah, R. H. Bott, “The Yang–Mills Equations over Riemann Surfaces”, Phil. Trans. R. Soc. Lond., 308 (1982), 523–615 | DOI | MR

[2] U. V. Desale, S. Ramanan, “Classification of Vector Bundles of Rank 2 on Hyperelliptic Curves”, Invent. Math., 38:2 (1976), 161–185 | DOI | MR | Zbl

[3] W. Fulton, Intersection Theory, Springer-Verlag, Berlin–Heidelberg, 1984 ; U. Fulton, Teoriya peresechenii, Mir, M., 1989 | MR | Zbl | MR

[4] Y. Laszlo, “La dimension de l'espace des sections du diviseur thêta généralisé”, Bull. Soc. Math. France, 119:3 (1991), 293–306 | MR | Zbl

[5] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Univ. Press, 1979 ; I. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1985 | MR | MR

[6] M. Thaddeus, “Conformal field theory and the cohomology of the moduli space of stable bundles”, J. Differential Geom., 35:1 (1992), 131–149 | MR | Zbl