Random processes generated by a hyperbolic sequence of mappings. II
Izvestiya. Mathematics , Tome 44 (1995) no. 3, pp. 617-627.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a direct continuation of . It contains proofs of the theorems announced there on the existence of invariant classes of functional elements and functional deformations for a hyperbolic sequence of mappings, as well as theorems on the existence of invariant cones in spaces of regular functions defined on a set of functional elements.
@article{IM2_1995_44_3_a8,
     author = {V. I. Bakhtin},
     title = {Random processes generated by a hyperbolic sequence of mappings. {II}},
     journal = {Izvestiya. Mathematics },
     pages = {617--627},
     publisher = {mathdoc},
     volume = {44},
     number = {3},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_44_3_a8/}
}
TY  - JOUR
AU  - V. I. Bakhtin
TI  - Random processes generated by a hyperbolic sequence of mappings. II
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 617
EP  - 627
VL  - 44
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_44_3_a8/
LA  - en
ID  - IM2_1995_44_3_a8
ER  - 
%0 Journal Article
%A V. I. Bakhtin
%T Random processes generated by a hyperbolic sequence of mappings. II
%J Izvestiya. Mathematics 
%D 1995
%P 617-627
%V 44
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_44_3_a8/
%G en
%F IM2_1995_44_3_a8
V. I. Bakhtin. Random processes generated by a hyperbolic sequence of mappings. II. Izvestiya. Mathematics , Tome 44 (1995) no. 3, pp. 617-627. http://geodesic.mathdoc.fr/item/IM2_1995_44_3_a8/

[1] V. I. Bakhtin, “Sluchainye protsessy, porozhdennye giperbolicheskoi posledovatelnostyu otobrazhenii. I”, Izv. RAN. Ser. matem., 58:2 (1994), 40–72 | Zbl

[2] G. A. Margulis, “O nekotorykh merakh, svyazannykh s $Y$-potokami na kompaktnykh mnogoobraziyakh”, Funkts. analiz, 4:1 (1970), 62–76 | MR | Zbl

[3] V. I. Bakhtin, “Pryamoi metod postroeniya invariantnoi mery na giperbolicheskom attraktore”, Izv. RAN. Ser. matem., 56:5 (1992), 934–957 | MR | Zbl