Random processes generated by a hyperbolic sequence of mappings. II
Izvestiya. Mathematics, Tome 44 (1995) no. 3, pp. 617-627
Cet article a éte moissonné depuis la source Math-Net.Ru
This paper is a direct continuation of . It contains proofs of the theorems announced there on the existence of invariant classes of functional elements and functional deformations for a hyperbolic sequence of mappings, as well as theorems on the existence of invariant cones in spaces of regular functions defined on a set of functional elements.
@article{IM2_1995_44_3_a8,
author = {V. I. Bakhtin},
title = {Random processes generated by a hyperbolic sequence of mappings. {II}},
journal = {Izvestiya. Mathematics},
pages = {617--627},
year = {1995},
volume = {44},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1995_44_3_a8/}
}
V. I. Bakhtin. Random processes generated by a hyperbolic sequence of mappings. II. Izvestiya. Mathematics, Tome 44 (1995) no. 3, pp. 617-627. http://geodesic.mathdoc.fr/item/IM2_1995_44_3_a8/
[1] V. I. Bakhtin, “Sluchainye protsessy, porozhdennye giperbolicheskoi posledovatelnostyu otobrazhenii. I”, Izv. RAN. Ser. matem., 58:2 (1994), 40–72 | Zbl
[2] G. A. Margulis, “O nekotorykh merakh, svyazannykh s $Y$-potokami na kompaktnykh mnogoobraziyakh”, Funkts. analiz, 4:1 (1970), 62–76 | MR | Zbl
[3] V. I. Bakhtin, “Pryamoi metod postroeniya invariantnoi mery na giperbolicheskom attraktore”, Izv. RAN. Ser. matem., 56:5 (1992), 934–957 | MR | Zbl