Minimal $I(\pi)$-groups
Izvestiya. Mathematics , Tome 44 (1995) no. 3, pp. 601-615

Voir la notice de l'article provenant de la source Math-Net.Ru

A complete description of minimal finite $I(\pi)$-groups with nilpotent $\pi$-Hall subgroup is obtained. Well-known results of Ito, Mann, and Robinson are then obtained as corollaries.
@article{IM2_1995_44_3_a7,
     author = {V. I. Zenkov},
     title = {Minimal $I(\pi)$-groups},
     journal = {Izvestiya. Mathematics },
     pages = {601--615},
     publisher = {mathdoc},
     volume = {44},
     number = {3},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_44_3_a7/}
}
TY  - JOUR
AU  - V. I. Zenkov
TI  - Minimal $I(\pi)$-groups
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 601
EP  - 615
VL  - 44
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_44_3_a7/
LA  - en
ID  - IM2_1995_44_3_a7
ER  - 
%0 Journal Article
%A V. I. Zenkov
%T Minimal $I(\pi)$-groups
%J Izvestiya. Mathematics 
%D 1995
%P 601-615
%V 44
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_44_3_a7/
%G en
%F IM2_1995_44_3_a7
V. I. Zenkov. Minimal $I(\pi)$-groups. Izvestiya. Mathematics , Tome 44 (1995) no. 3, pp. 601-615. http://geodesic.mathdoc.fr/item/IM2_1995_44_3_a7/