A theorem on the mean value of Chebishev functions
Izvestiya. Mathematics , Tome 44 (1995) no. 3, pp. 555-569.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new estimate is obtained for the mean values of Chebyshev functions over all primitive characters whose modulus does not exceed a given quantity.
@article{IM2_1995_44_3_a5,
     author = {Z. Kh. Rakhmonov},
     title = {A theorem on the mean value of {Chebishev} functions},
     journal = {Izvestiya. Mathematics },
     pages = {555--569},
     publisher = {mathdoc},
     volume = {44},
     number = {3},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_44_3_a5/}
}
TY  - JOUR
AU  - Z. Kh. Rakhmonov
TI  - A theorem on the mean value of Chebishev functions
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 555
EP  - 569
VL  - 44
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_44_3_a5/
LA  - en
ID  - IM2_1995_44_3_a5
ER  - 
%0 Journal Article
%A Z. Kh. Rakhmonov
%T A theorem on the mean value of Chebishev functions
%J Izvestiya. Mathematics 
%D 1995
%P 555-569
%V 44
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_44_3_a5/
%G en
%F IM2_1995_44_3_a5
Z. Kh. Rakhmonov. A theorem on the mean value of Chebishev functions. Izvestiya. Mathematics , Tome 44 (1995) no. 3, pp. 555-569. http://geodesic.mathdoc.fr/item/IM2_1995_44_3_a5/

[1] I. M. Vinogradov, Izbrannye trudy, Iz-vo AN SSSR, M., 1952 | MR | Zbl

[2] I. M. Vinogradov, “Uluchshenie otsenki dlya summy znachenii $\chi(p+k)$”, Izv. AN SSSR. Ser. matem., 17:4 (1953), 285–290 | MR | Zbl

[3] Yu. V. Linnik, “Teoriya chisel”, Matematika v SSSR za sorok let 1917–1957, 1, Fizmatgiz, M., 1959, 48–51

[4] A. A. Karatsuba, “Summy kharakterov i pervoobraznye korni v konechnykh polyakh”, DAN SSSR, 180:6 (1968), 1287–1289 | Zbl

[5] A. A. Karatsuba, “Summy kharakterov s prostymi chislami”, Izv. AN SSSR. Ser. matem., 34:2 (1970), 299–321 | Zbl

[6] A. A. Karatsuba, “Raspredelenie proizvedenii sdvinutykh prostykh chisel v arifmeticheskikh progressiyakh”, DAN SSSR, 192:4 (1970), 724–727 | Zbl

[7] M. M. Petechuk, “Summy znachenii funktsii delitelei v arifmeticheskikh progressiyakh s raznostyu, ravnoi stepeni nechetnogo prostogo chisla”, Izv. AN SSSR. Ser. matem., 43:4 (1979), 892–908 | MR | Zbl

[8] J. B. Friendlander, H. Iwaniec, “The divisor problem for arithemetic progression”, Acta Arith., XLV:3 (1985), 273–277

[9] Z. Kh. Rakhmonov, “Raspredelenie chisel Khardi–Littlvuda v arifmeticheskikh progressiyakh”, Izv. AN SSSR. Ser. matem., 53:1 (1989), 211–224 | MR | Zbl

[10] Pan Chen Dong, Pan Chen Byao, Osnovy analiticheskoi teorii chisel, na kitaiskom yazyke, Pekin, 1991 | MR

[11] Yu. V. Linnik, Izbrannye trudy, Nauka, L., 1980 | MR | Zbl

[12] A. Reni, “O predstavlenii chetnogo chisla kak summy prostogo i pochti prostogo”, Izv. AN SSSR. Ser. matem., 12:1 (1948), 57–78 | MR

[13] E. Bombieri, H. Davenport, “On large sieve method”, Abh. aus Zahlentheorie und Analysis zur Erinnerung an Edmund Landay, Deut Verlag Wiss., Berlin, 1968, 11–22 | MR

[14] H. Davenport, “Halberstam, Primes in arithmetic progressions”, Michigan Math. J., 13 (1966), 485–489 | DOI | MR | Zbl

[15] P. X. Gallagher, “The large sieve”, Mathematica, 14 (1967), 14–20 | MR | Zbl

[16] E. Bombieri, “On the large sieve”, Mathematica, 12 (1965), 201–225 | MR | Zbl

[17] A. I. Vinogradov, “O plotnostnoi gipoteze dlya $L$-funktsii Dirikhle”, Izv. AN SSSR. Ser. matem., 29:4 (1965), 903–934 | MR | Zbl

[18] G. Montgomeri, Multiplikativnaya teoriya chisel, Mir, M., 1974 | MR

[19] R. C. Vaughan, “Mean value theorems in prime number theory”, J. London Math. Soc. (2), 10 (1975), 153–162 | DOI | MR | Zbl

[20] P. X. Gallagher, “A large sieve density estimate near $\sigma=1$”, Invent. Math., 11 (1970), 329–339 | DOI | MR | Zbl

[21] Z. Kh. Rakhmonov, “Teorema o srednem znachenii $\Psi(x,\chi)$ i ee prilozheniya”, Izv. RAN. Ser. matem., 57:4 (1993), 55–71 | Zbl

[22] Z. Kh. Rakhmonov, “Srednie znacheniya funktsii Chebysheva”, DAN Rossii, 331:3 (1993), 281–282 | MR | Zbl

[23] B. M. Levin, “Raspredelenie arifmeticheskikh funktsii po progressiyam”, Tez. Vsesoyuz. konf. "Teoriya trans, chisel i dif. pribl.", M., 1993, 72–73

[24] N. M. Timofeev, “O teoreme Vinogradova–Bomberi”, Matem. zametki, 38:6 (1985), 801–809 | MR | Zbl

[25] E. Bombieri, J. B. Friedlander, H. Iwaniec, “Primes in arithmetic progression to large moduli. III”, J. American Math. Soc., 2:2 (1989), 215–224 | DOI | MR

[26] A. A. Karatsuba, Osnovy analiticheskoi teorii chisel, Nauka, M., 1983 | MR

[27] K. K. Mardzhanishvili, “Otsenka odnoi arifmeticheskoi summy”, DAN SSSR, 22:7 (1939), 391–393

[28] K. Prakhar, Raspredelenie prostykh chisel, Mir, M., 1967 | MR

[29] N. M. Timofeev, “Raspredelenie arifmeticheskikh funktsii v korotkikh intervalakh v srednem po progressiyam”, Izv. AN SSSR. Ser. matem., 51:2 (1987), 341–362 | MR | Zbl