On~equivariant Grothendieck cohomology of a real algebraic variety, and its applications
Izvestiya. Mathematics , Tome 44 (1995) no. 3, pp. 461-477.

Voir la notice de l'article provenant de la source Math-Net.Ru

New results on equivariant cohomology of a real algebraic variety are proved; in particular, the first spectral sequence is computed. These results are applied to prove analogs of the Harnack–Thom inequality and to study relations between characteristic classes.
@article{IM2_1995_44_3_a1,
     author = {V. A. Krasnov},
     title = {On~equivariant {Grothendieck} cohomology of a real algebraic variety, and its applications},
     journal = {Izvestiya. Mathematics },
     pages = {461--477},
     publisher = {mathdoc},
     volume = {44},
     number = {3},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_44_3_a1/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - On~equivariant Grothendieck cohomology of a real algebraic variety, and its applications
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 461
EP  - 477
VL  - 44
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_44_3_a1/
LA  - en
ID  - IM2_1995_44_3_a1
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T On~equivariant Grothendieck cohomology of a real algebraic variety, and its applications
%J Izvestiya. Mathematics 
%D 1995
%P 461-477
%V 44
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_44_3_a1/
%G en
%F IM2_1995_44_3_a1
V. A. Krasnov. On~equivariant Grothendieck cohomology of a real algebraic variety, and its applications. Izvestiya. Mathematics , Tome 44 (1995) no. 3, pp. 461-477. http://geodesic.mathdoc.fr/item/IM2_1995_44_3_a1/

[1] V. A. Krasnov, “Neravenstva Garnaka–Toma dlya otobrazhenii veschestvennykh algebraicheskikh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 47:2 (1983), 268–297 | MR

[2] V. A. Krasnov, “O klassakh gomologii, opredelennykh veschestvennymi tochkami veschestvennogo algebraicheskogo mnogoobraziya”, Izv. AN SSSR. Ser. matem., 55:2 (1991), 282–302 | MR | Zbl

[3] V. A. Krasnov, “Kharakteristicheskie klassy vektornykh rassloenii na veschestvennom algebraicheskom mnogoobrazii”, Izv. AN SSSR. Ser. matem., 55:4 (1991), 716–746 | MR

[4] V. A. Krasnov, “Algebraicheskie tsikly na veschestvennom algebraicheskom $GM$-mnogoobrazii i ikh prilozheniya”, Izv. RAN. Ser. matem., 57:4 (1993), 153–173 | MR | Zbl

[5] V. A. Krasnov, “O klassakh kogomologii, opredelennykh veschestvennymi tochkami veschestvennoi algebraicheskoi GM-poverkhnosti”, Izv. RAN. Ser. matem., 57:5 (1993), 210–221 | MR | Zbl

[6] V. V. Nikulin, Lectures on the Brauer group of real algebraic surfaces, Preprint No 179, Univ. of Notre Dame. January, 1992

[7] A. Grotendik, O nekotorykh voprosakh gomologicheskoi algebry, IL, M., 1961

[8] O. Ya. Viro, “Uspekhi v topologii veschestvennykh algebraicheskikh mnogoobrazii za poslednie shest let”, UMN, 41:3 (1986), 45–67 | MR | Zbl

[9] Dzh. Milnor, Dzh. Stashef, Kharakteristicheskie klassy, Mir, M., 1969 | MR

[10] J.-L. Colliot-Thélène, Parimala, “Real components of algebraic varieties and etale cohomology”, Invent. math., 101 (1990), 81–99 | DOI | MR | Zbl

[11] U. Fulton, Teoriya peresechenii, Mir, M., 1989 | MR