$G$-convergence and homogenization of nonlinear elliptic operators in divergence form with variable domain
Izvestiya. Mathematics , Tome 44 (1995) no. 3, pp. 431-460.

Voir la notice de l'article provenant de la source Math-Net.Ru

The concepts of $G$-convergence and strong $G$-convergence of a sequence of elliptic operators $A_s\colon W^{1,m}(\Omega_s)\to(W^{1,m}(\Omega_s))^*$ are studied, where $\Omega_s$, $s=1,2,\dots$, are perforated domains contained in a bounded domain $\Omega\subset\mathbf R^n$. It is established that $G$-convergence of the operators $A_s$ is accompanied by convergence of solutions of certain equations and variational inequalities connected with the operators $A_s$ and a theorem on selection from the sequence $\{A_s\}$ of a strongly $G$-convergent subsequence. It is shown that under the condition of periodicity of the perforation of domains $\Omega_s$ and certain assumptions regarding the coefficients of the operators $A_s$, strong $G$-convergence of $\{A_s\}$ to an operator $A\colon W^{1,m}(\Omega)\to(W^{1,m}(\Omega))^*$ holds with effectively computable coefficients.
@article{IM2_1995_44_3_a0,
     author = {A. A. Kovalevsky},
     title = {$G$-convergence and homogenization of nonlinear elliptic operators in divergence form with variable domain},
     journal = {Izvestiya. Mathematics },
     pages = {431--460},
     publisher = {mathdoc},
     volume = {44},
     number = {3},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_44_3_a0/}
}
TY  - JOUR
AU  - A. A. Kovalevsky
TI  - $G$-convergence and homogenization of nonlinear elliptic operators in divergence form with variable domain
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 431
EP  - 460
VL  - 44
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_44_3_a0/
LA  - en
ID  - IM2_1995_44_3_a0
ER  - 
%0 Journal Article
%A A. A. Kovalevsky
%T $G$-convergence and homogenization of nonlinear elliptic operators in divergence form with variable domain
%J Izvestiya. Mathematics 
%D 1995
%P 431-460
%V 44
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_44_3_a0/
%G en
%F IM2_1995_44_3_a0
A. A. Kovalevsky. $G$-convergence and homogenization of nonlinear elliptic operators in divergence form with variable domain. Izvestiya. Mathematics , Tome 44 (1995) no. 3, pp. 431-460. http://geodesic.mathdoc.fr/item/IM2_1995_44_3_a0/

[1] S. Spagnolo, “Sul limite delle soluzioni di problemi di Cauchy relativi all'equazione del calore”, Ann. Scuola Norm. Sup. Pisa, Cl. Sci., 21 (1967), 657–699 | MR | Zbl

[2] S. Spagnolo, “Sulla convergenza di soluzioni di equazioni paraboliche ed ellitiche”, Ann. Scuola Norm. Sup. Pisa, Cl. Sci., 22 (1968), 571–597 | MR

[3] E. De Giorgi, S. Spagnolo, “Sulla convergenza degli integrali dell'energia per operatori ellitici del secondo ordine”, Boll. Un. Mat. Ital., 8:3 (1973), 391–411 | MR | Zbl

[4] V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, Kha Ten Ngoan, “Usrednenie i $G$-skhodimost differentsialnykh operatorov”, UMN, 34:5 (1979), 65–133 | MR | Zbl

[5] V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, “O $G$-skhodimosti parabolicheskikh operatorov”, UMN, 36:1 (1981), 11–58 | MR

[6] U. E. Raitum, “K $G$-skhodimosti kvazilineinykh ellipticheskikh operatorov s neogranichennymi koeffitsientami”, DAN SSSR, 243:1 (1981), 30–33 | MR

[7] U. E. Raitum, “K potere gladkosti differentsialnykh operatorov pri $G$-skhodimosti”, Differents. uravn., 20:3 (1984), 508–513 | MR | Zbl

[8] A. A. Pankov, “Ob usrednenii i $G$-skhodimosti nelineinykh ellipticheskikh operatorov divergentnogo vida”, DAN SSSR, 278:1 (1984), 37–41 | MR | Zbl

[9] A. A. Pankov, “Usrednenie nelineinykh pochti periodicheskikh ellipticheskikh operatorov”, DAN USSR. Ser. A, 1985, no. 5, 19–21 | MR | Zbl

[10] A. A. Pankov, $G$-skhodimost i usrednenie nelineinykh ellipticheskikh operatorov, Preprint 2.88, IPPMM AN USSR, Lvov, 1988

[11] R. N. Kunch, A. A. Pankov, “$G$-skhodimost monotonnykh parabolicheskikh operatorov”, DAN USSR. Ser. A, 1986, no. 8, 8–10 | MR

[12] E. Ya. Khruslov, “Pervaya kraevaya zadacha v oblastyakh so slozhnoi granitsei dlya uravnenii vysshikh poryadkov”, Matem. sb., 103:4 (1977), 614–629 | MR | Zbl

[13] E. Ya. Khruslov, “Asimptoticheskoe povedenie reshenii vtoroi kraevoi zadachi pri izmelchenii granitsy oblasti”, Matem. sb., 106:4 (1978), 604–621 | MR | Zbl

[14] E. Ya. Khruslov, “O skhodimosti reshenii vtoroi kraevoi zadachi v slabo svyazannykh oblastyakh”, Teoriya operatorov v funktsionalnykh prostranstvakh i ee prilozheniya, Sb. nauch. tr., Nauk. dumka, Kiev, 1981, 129–173 | MR

[15] E. Ya. Khruslov, Usrednennaya model nestatsionarnoi diffuzii v treschinovato-poristykh sredakh, Preprint 50.88, FTINT AN USSR, Kharkov, 1988

[16] L. V. Berlyand, I. Yu. Chudinovich, “Usrednenie kraevykh zadach dlya differentsialnykh operatorov vysshikh poryadkov v oblastyakh s pustotami”, DAN SSSR, 272:4 (1983), 777–780 | MR | Zbl

[17] A. A. Kovalevskii, Vtoraya kraevaya zadacha dlya variatsionnykh ellipticheskikh uravnenii v oblastyakh slozhnoi struktury, Preprint 84.40, IM AN USSR, Kiev, 1984 | MR

[18] A. A. Kovalevskii, “Usrednenie peremennykh variatsionnykh zadach”, DAN USSR. Ser. A, 1988, no. 8, 6–9 | MR | Zbl

[19] A. A. Kovalevskii, “O svyazannosti podmnozhestv sobolevskikh prostranstv i $\Gamma$-skhodimosti funktsionalov s peremennoi oblastyu opredeleniya”, Nelinein. granich. zadachi, 1 (1989), 48–54

[20] A. A. Kovalevskii, “O nekotorykh voprosakh, svyazannykh s problemoi usredneniya variatsionnykh zadach dlya funktsionalov s peremennoi oblastyu opredeleniya”, Sovremennyi analiz i ego prilozheniya, Sb. nauch. tr., Nauk. dumka, Kiev, 1989, 62–70 | MR | Zbl

[21] A. A. Kovalevskii, “Usloviya $\Gamma$-skhodimosti i usrednenie integralnykh funktsionalov s razlichnymi oblastyami opredeleniya”, DAN USSR, 1991, no. 4, 5–8 | MR

[22] L. S. Pankratov, Ob asimptoticheskom povedenii reshenii variatsionnykh zadach v oblastyakh so slozhnoi granitsei, Preprint 11.87, FTINT AN USSR, Kharkov, 1987

[23] L. S. Pankratov, O skhodimosti reshenii variatsionnykh zadach v slabo svyazannykh oblastyakh, Preprint 53.88, FTINT AN USSR, Kharkov, 1988

[24] L. S. Pankratov, “Asimptoticheskoe povedenie reshenii variatsionnykh zadach v oblastyakh s “nakopitelyami””, 1990, 54, 97–105 | MR

[25] I. V. Skrypnik, “Kvazilineinaya zadacha Dirikhle dlya oblastei s melkozernistoi granitsei”, DAN USSR. Ser. A, 1982, no. 2, 21–25 | MR | Zbl

[26] I. V. Skrypnik, “O skhodimosti reshenii nelineinoi zadachi Dirikhle pri izmelchenii granitsy oblasti”, Zapiski nauchnykh seminarov LOMI AN SSSR, 115 (1982), 236–250 | MR | Zbl

[27] I. V. Skrypnik, “Usrednenie kvazilineinykh ellipticheskikh zadach v perforirovannykh oblastyakh”, UMN, 40:4 (1985), 197–198 | MR | Zbl

[28] I. V. Skrypnik, “Usrednenie nelineinykh zadach Dirikhle v oblastyakh s kanalami”, DAN SSSR, 313:5 (1990), 1049–1053

[29] A. A. Kovalevski, “$G$-skhodimost abstraktnykh operatorov s razlichnymi oblastyami opredeleniya”, DAN USSR. Ser. A, 1989, no. 3, 20–23 | Zbl

[30] A. A. Kovalevskii, “$G$-skhodimost operatorov, opredelennykh na razlichnykh banakhovykh prostranstvakh, i skhodimost reshenii variatsionnykh neravenstv”, DAN USSR. Ser. A, 1989, no. 5, 15–17 | MR | Zbl

[31] A. A. Kovalevskii, “O silnoi $G$-skhodimosti nelineinykh ellipticheskikh operatorov, svyazannykh s perforirovannymi oblastyami”, DAN USSR. Ser. A, 1990, no. 7, 14–17 | MR | Zbl

[32] A. A. Kovalevskii, $G$-skhodimost i usrednenie nelineinykh ellipticheskikh operatorov s razlichnymi oblastyami opredeleniya, Preprint 90.01, IPMM AN USSR, Donetsk, 1990

[33] A. A. Kovalevskii, “O G-skhodimosti nelineinykh ellipticheskikh operatorov s razlichnymi oblastyami opredeleniya”, Nelinein. granichn. zadachi, 3 (1991), 26–35

[34] A. A. Kovalevskii A.A., “O skhodimosti reshenii variatsionnykh neravenstv s dvustoronnimi prepyatstviyami v perforirovannykh oblastyakh”, Ukr. matem. zhurn., 44:2 (1992), 191–197 | MR

[35] Zh.-L. Lions, Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[36] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[37] L. Boccardo, D. Capuzzo, “$G$-convergenza e problema di Dirichlet unilaterale”, Boll. Un. Mat. Ital., 12:1–2 (1975), 115–123 | MR | Zbl

[38] H. Attouch, Y. Konishi, “Convergence d'operateur maximaux monotones et inequations variationnelles”, C.r. Acad. Sci. Ser. A, 282:9 (1976), 467–469 | MR | Zbl

[39] L. Boccardo, P. Marcellini, “Sulla convergenza delle soluzioni di disequazioni variazionali”, Ann. mat. pura. ed appl., 110 (1976), 137–159 | DOI | MR | Zbl

[40] V. V. Zhikov, “O perekhode k predelu v nelineinykh variatsionnykh zadachakh”, Matem. sb., 183:8 (1992), 47–84