Reconstruction of the nonhomogeneous term in an abstract evolution equation
Izvestiya. Mathematics , Tome 44 (1995) no. 2, pp. 373-394.

Voir la notice de l'article provenant de la source Math-Net.Ru

A nonhomogeneous evolution equation the right-hand side of which is unknown is considered in a Banach space. For the determination of the unknown right-hand side, in addition to the Cauchy condition, a special overdetermination is given. In the paper a systematic theory for the investigation of the problem indicated is constructed, and sufficient conditions for the existence and uniqueness of solution are given. Special attention is paid to certain problems of perturbation theory.
@article{IM2_1995_44_2_a8,
     author = {A. I. Prilepko and I. V. Tikhonov},
     title = {Reconstruction of the nonhomogeneous term in an abstract evolution equation},
     journal = {Izvestiya. Mathematics },
     pages = {373--394},
     publisher = {mathdoc},
     volume = {44},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_44_2_a8/}
}
TY  - JOUR
AU  - A. I. Prilepko
AU  - I. V. Tikhonov
TI  - Reconstruction of the nonhomogeneous term in an abstract evolution equation
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 373
EP  - 394
VL  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_44_2_a8/
LA  - en
ID  - IM2_1995_44_2_a8
ER  - 
%0 Journal Article
%A A. I. Prilepko
%A I. V. Tikhonov
%T Reconstruction of the nonhomogeneous term in an abstract evolution equation
%J Izvestiya. Mathematics 
%D 1995
%P 373-394
%V 44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_44_2_a8/
%G en
%F IM2_1995_44_2_a8
A. I. Prilepko; I. V. Tikhonov. Reconstruction of the nonhomogeneous term in an abstract evolution equation. Izvestiya. Mathematics , Tome 44 (1995) no. 2, pp. 373-394. http://geodesic.mathdoc.fr/item/IM2_1995_44_2_a8/

[1] E. Khille, R. Fillips, Funktsionalnyi analiz i polugruppy, IL, M., 1962

[2] S. G. Krein, Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR

[3] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983 | MR | Zbl

[4] W. Arendt, A. Grabosch, G. Greiner et al., One Parameter Semigroups of Positive Operators, Lect. Notes Math., 1184, Springer-Verlag, Berlin, 1986 | MR | Zbl

[5] A. N. Tikhonov, V. Ya. Arsenin, Metody resheniya nekorrektnykh zadach, 3-e izd., Nauka, M., 1986 | MR | Zbl

[6] I. P. Natanson, Teoriya funktsii veschestvennoi peremennoi. 3-e izd., Nauka, M., 1974 | MR

[7] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, 3-e izd., pererab., Nauka, M., 1984 | MR | Zbl

[8] M. M. Lavrentev, V. G. Romanov, V. G. Vasilev, Mnogomernye obratnye zadachi dlya differentsialnykh uravnenii, Nauka, Novosibirsk, 1969 | MR

[9] A. I. Prilepko, “Obratnye zadachi teorii potentsiala”, Matem. zametki, 14:5 (1973), 755–767 | MR | Zbl

[10] A. D. Iskenderov, R. G. Tagiev, “Obratnaya zadacha ob opredelenii pravykh chastei evolyutsionnykh uravnenii v banakhovom prostranstve”, Nauch. trudy Azerb. un-ta. Voprosy prikladnoi matematiki i kibernetiki, 1979, no. 1, 51–56 | Zbl

[11] W. Rundell, “Determination of an Unknown Non-Homogeneous Term in a Linear Partial Differential Equation from Overspecified Boundary Data”, Applicable Analysis, 10:3 (1980), 231–242 | DOI | MR | Zbl

[12] A. I. Prilepko, V. V. Solovev, “Teoremy razreshimosti i metod Rote v obratnykh zadachakh dlya uravnenii parabolicheskogo tipa”, Differents. uravn., 23:11 (1987), 1971–1980 | MR | Zbl

[13] A. I. Prilepko, I. A. Vasin, “Nekotorye nestatsionarnye obratnye zadachi gidrodinamiki s finalnym nablyudeniem”, DAN SSSR, 314:5 (1990), 1075–1078 | MR | Zbl

[14] A. I. Prilepko, A. B. Kostin, “O nekotorykh obratnykh zadachakh dlya parabolicheskikh uravnenii s finalnym i integralnym nablyudeniem”, Matem. sb., 183:4 (1992), 49–68 | MR | Zbl

[15] A. I. Prilepko, I. V. Tikhonov, “Edinstvennost resheniya obratnoi zadachi dlya evolyutsionnogo uravneniya i prilozheniya k uravneniyu perenosa”, Matem. zametki, 51:2 (1992), 77–87 | MR | Zbl

[16] A. I. Prilepko, I. V. Tikhonov, “Obratnaya zadacha s finalnym pereopredeleniem dlya abstraktnogo evolyutsionnogo uravneniya v uporyadochennom banakhovom prostranstve”, Funktsionalnyi analiz i ego prilozh., 27:1 (1993), 81–83 | MR | Zbl

[17] D. G. Orlovskii, “Obratnaya zadacha Koshi dlya evolyutsionnykh uravnenii v banakhovom prostranstve”, Analiz matematicheskikh modelei fizicheskikh protsessov, Energoatomizdat, M., 1988, 84–90

[18] D. G. Orlovskii, “K zadache opredeleniya parametra evolyutsionnogo uravneniya”, Differents. uravn., 26:9 (1990), 1614–1621 | MR

[19] Yu. S. Eidelman, “Usloviya razreshimosti obratnykh zadach dlya evolyutsionnykh uravnenii”, DAN USSR. Ser. A, 1990, no. 7, 28–31 | MR

[20] V. L. Kamynin, “Predelnyi perekhod v obratnykh zadachakh dlya nedivergentnykh parabolicheskikh uravnenii s usloviem finalnogo pereopredeleniya”, Differents. uravn., 28:2 (1992), 247–253 | MR | Zbl