Yang--Baxter operators and noncommutative de~Rham complexes
Izvestiya. Mathematics , Tome 44 (1995) no. 2, pp. 315-338.

Voir la notice de l'article provenant de la source Math-Net.Ru

Axiomatic approaches to the construction of differential calculi on quantum objects are studied in this paper. The connection between universal coacting semigroups and $R$-matrix quantum semigroups is investigated. Covariant quantum (noncommutative) de Rham complexes on quantum spaces, strong $R$-matrix quantum semigroups, and the quantum group $SL_q(2)$ are described.
@article{IM2_1995_44_2_a5,
     author = {E. E. Mukhin},
     title = {Yang--Baxter operators and noncommutative {de~Rham} complexes},
     journal = {Izvestiya. Mathematics },
     pages = {315--338},
     publisher = {mathdoc},
     volume = {44},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_44_2_a5/}
}
TY  - JOUR
AU  - E. E. Mukhin
TI  - Yang--Baxter operators and noncommutative de~Rham complexes
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 315
EP  - 338
VL  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_44_2_a5/
LA  - en
ID  - IM2_1995_44_2_a5
ER  - 
%0 Journal Article
%A E. E. Mukhin
%T Yang--Baxter operators and noncommutative de~Rham complexes
%J Izvestiya. Mathematics 
%D 1995
%P 315-338
%V 44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_44_2_a5/
%G en
%F IM2_1995_44_2_a5
E. E. Mukhin. Yang--Baxter operators and noncommutative de~Rham complexes. Izvestiya. Mathematics , Tome 44 (1995) no. 2, pp. 315-338. http://geodesic.mathdoc.fr/item/IM2_1995_44_2_a5/

[1] E. Abe, Hopf algebras, Cambridge Tracts in Math., 74, Cambridge University Press, 1980 | MR | Zbl

[2] G. M. Bergman, “The diamond lemma for ring theory”, Adv. in Math., 29:2 (1978), 178–218 | DOI | MR | Zbl

[3] P. Delin, D. Miln, “Kategorii Tannaki”, Khodzhevy tsikly i motivy, Mir, M., 1985, 94–201 | MR

[4] E. E. Demidov, “O kompleksakh Vessa–Zumino”, Funkts. analiz, 27:1 (1993), 73–74 | MR

[5] E. E. Demidov, Yu. I. Manin, E. E. Mukhin, D. V. Zhdanovich, Non-standard deformations of $GL(n)$ and constant solutions of the Yang–Baxter equation, Preprint RIMS-701, Kyoto, 1990 | MR

[6] V. G. Drinfeld, “Algebry Khopfa i kvantovoe uravnenie Yanga–Bakstera”, DAN SSSR, 283:5 (1985), 1060–1064 | MR

[7] V. G. Drinfeld, “Kvantovye gruppy”, Zapiski LOMI, 155, 18–49 | MR

[8] M. Jimbo, “A $q$-difference analogue of Vog and the Yang–Baxter equation”, Lett. Math. Phys., 10 (1985), 63–69 | DOI | MR | Zbl

[9] V. V. Lyubashenko, Algebry Khopfa i simmetrii, KPI, Kiev, 1985, 8A447

[10] Ju. I. Manin, Quantum groups and non-commutative geometry GRM, Univ. de Montreal, 1988 | Zbl

[11] Ju. I. Manin, Notes on quantum groups and quantum de Rham complexes, Preprint MPI/91-60, Bonn, 1991

[12] E. E. Mukhin, “Operatory Yanga–Bakstera i nekommutativnyi kompleks de Rama”, UMN, 46:4 (1991), 165–166 | MR

[13] O. Ogievetsky, Differetial operators on quantum spaes of $GL_q(n)$ and $SO_q(n)$, Preprint MPI-Ph/91-103, 1991

[14] B. Parshall, J. Wang, “Quantum linear groups”, Memoirs of A.M.S., 89:439 (1991), 1–157 | MR

[15] N. Yu. Reshetikhin, L. D. Takhtadzhyan, L. D. Faddeev, “Kvantovanie grupp Li i algebr Li”, Algebra i analiz, 1:1 (1989), 178–206 | MR

[16] K. Schmüdgen, Covariant differential calculi on quantum spaces, Preprint, Leipzig | MR

[17] A. Sudbery, Consistent multiparameter quantisation of $GL(n)$, Preprint, n.k. YO15DD, York, 1990 | MR

[18] J. Wess, B. Zumino, Covariant differential calculus on the quantum hyperplane, Preprint CERN-TH-5697/90, Geneva, 1990 | MR

[19] S. L. Woronovicz, “Compact Matrix pseudogroups”, Comm. Math. Phys., 111 (1987), 613–665 | DOI | MR

[20] S. L. Woronovicz, “Differential calculus on compact matrix pseudogroups (Quantum groups)”, Comm. Math. Phys., 122:1 (1989), 125–170 | DOI | MR