Cubic manifolds in lattices
Izvestiya. Mathematics , Tome 44 (1995) no. 2, pp. 301-313.

Voir la notice de l'article provenant de la source Math-Net.Ru

A study is made of cubic complexes, and in particular of cubic manifolds. Necessary and sufficient conditions are obtained for a cubic manifold to be mapped into a standard cubic lattice.
@article{IM2_1995_44_2_a4,
     author = {N. P. Dolbilin and M. A. Shtan'ko and M. I. Shtogrin},
     title = {Cubic manifolds in lattices},
     journal = {Izvestiya. Mathematics },
     pages = {301--313},
     publisher = {mathdoc},
     volume = {44},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_44_2_a4/}
}
TY  - JOUR
AU  - N. P. Dolbilin
AU  - M. A. Shtan'ko
AU  - M. I. Shtogrin
TI  - Cubic manifolds in lattices
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 301
EP  - 313
VL  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_44_2_a4/
LA  - en
ID  - IM2_1995_44_2_a4
ER  - 
%0 Journal Article
%A N. P. Dolbilin
%A M. A. Shtan'ko
%A M. I. Shtogrin
%T Cubic manifolds in lattices
%J Izvestiya. Mathematics 
%D 1995
%P 301-313
%V 44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_44_2_a4/
%G en
%F IM2_1995_44_2_a4
N. P. Dolbilin; M. A. Shtan'ko; M. I. Shtogrin. Cubic manifolds in lattices. Izvestiya. Mathematics , Tome 44 (1995) no. 2, pp. 301-313. http://geodesic.mathdoc.fr/item/IM2_1995_44_2_a4/

[1] S. P. Novikov, “Topologiya”, Topologiya - 1, Itogi Nauki i Tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 12, VINITI, M., 1986, 5–252 | MR

[2] L. Onsager, “Crystal Statistics. I: Two-Dimensional Model with an Order-Disorder Transition”, Phys. Rev., 65 (1944), 117–149 | DOI | MR | Zbl

[3] M. Kac, J. C. Ward, “A Combinatorial Solution of the Two-Dimensional Ising Model”, Phys. Rev., 88 (1952), 1332–1337 | DOI | MR | Zbl

[4] L. D. Landau, E. M. Lifshits, Statisticheskaya fizika, Nauka, M., 1976 | MR

[5] R. Feinman, Statisticheskaya mekhanika, Mir, M., 1978

[6] N. P. Dolbilin, M. A. Shtanko, M. I. Shtogrin, “Kubicheskie podkompleksy v pravilnykh reshetkakh”, DAN SSSR, 291:2 (1986), 277–279 | MR

[7] N. P. Dolbilin, A. G. Sedrakyan, M. A. Shtanko, M. I. Shtogrin, “Topologiya semeistva parametrizatsii dvumernykh tsiklov, voznikayuschikh v trekhmernoi modeli Izinga”, DAN SSSR, 295:1 (1987), 19–23 | MR | Zbl

[8] N. P. Dolbilin, M. A. Shtanko, M. I. Shtogrin, “Problema parametrizatsii tsiklov po modulyu 2 v trekhmernoi kubicheskoi reshetke”, Izv. AN SSSR. Ser. matem., 52:2 (1988), 355–377 | MR | Zbl

[9] N. P. Dolbilin, M. A. Shtanko, M. I. Shtogrin, “Kvadrilyazhi i parametrizatsii reshetochnykh tsiklov”, Sb., posv. 100-letiyu B. N. Delone, Tr. MIAN, 196, 1991, 66–85 | MR

[10] N. P. Dolbilin, M. A. Shtanko, M. I. Shtogrin, “Kombinatornye voprosy dvumernoi modeli Izinga”, Sb., posv. 100-letiyu B. N. Delone, Tr. MIAN, 196, 1991, 51–65 | MR

[11] O. R. Karalashvili, “Ob otobrazheniyakh kubicheskikh mnogoobrazii v standartnuyu reshetku evklidova prostranstva”, Sb., posv. 100-letiyu B. N. Delone, Tr. MIAN, 196, 1991, 86–89 | MR

[12] L. C. Siebenmann, “Are nontriangulable manifolds triangulables?”, Topology Manifolds, Markham Publ. Comp., Chicago, 1970, 77–84 | MR

[13] M. A. Shtanko, “Osnovnaya gipoteza dlya poliedrov”, Mat. zametki, 37:5 (1985), 774–778 | MR

[14] Dzh. Milnor, Dzh. Stashev, Kharakteristicheskie klassy, Mir, M., 1979 | MR

[15] M. W. Hirsch, B. Mazur, Smoothing of piecewise linear manifolds, Ann. of Math. Studies, 80, Princeton Univ. Press, Princeton, 1974 | MR | Zbl

[16] A. Dold, Lektsii po algebraicheskoi topologii, Mir, M., 1976 | MR

[17] M. A. Shtanko, M. I. Shtogrin, “O vlozhenii kubicheskikh mnogoobrazii i kompleksov v kubicheskuyu reshetku”, UMN, 47:1(283) (1992), 219–220 | MR