Pseudocharacters on free groups
Izvestiya. Mathematics , Tome 44 (1995) no. 1, pp. 119-141

Voir la notice de l'article provenant de la source Math-Net.Ru

The perturbations of additive real characters on a free group $F$ are studied. A description is given of the space of its pseudocharacters, i.e., the real functions $f$ on $F$ such that the set $\{f(xy)-f(x)-f(y)$; $x,y\in F\}$ is bounded and $f(x^n)=nf(x)$ $\forall\,n\in\mathbf Z$, $\forall\,x\in F$.
@article{IM2_1995_44_1_a5,
     author = {V. A. Faiziev},
     title = {Pseudocharacters on free groups},
     journal = {Izvestiya. Mathematics },
     pages = {119--141},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a5/}
}
TY  - JOUR
AU  - V. A. Faiziev
TI  - Pseudocharacters on free groups
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 119
EP  - 141
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a5/
LA  - en
ID  - IM2_1995_44_1_a5
ER  - 
%0 Journal Article
%A V. A. Faiziev
%T Pseudocharacters on free groups
%J Izvestiya. Mathematics 
%D 1995
%P 119-141
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a5/
%G en
%F IM2_1995_44_1_a5
V. A. Faiziev. Pseudocharacters on free groups. Izvestiya. Mathematics , Tome 44 (1995) no. 1, pp. 119-141. http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a5/