Pseudocharacters on free groups
Izvestiya. Mathematics , Tome 44 (1995) no. 1, pp. 119-141.

Voir la notice de l'article provenant de la source Math-Net.Ru

The perturbations of additive real characters on a free group $F$ are studied. A description is given of the space of its pseudocharacters, i.e., the real functions $f$ on $F$ such that the set $\{f(xy)-f(x)-f(y)$; $x,y\in F\}$ is bounded and $f(x^n)=nf(x)$ $\forall\,n\in\mathbf Z$, $\forall\,x\in F$.
@article{IM2_1995_44_1_a5,
     author = {V. A. Faiziev},
     title = {Pseudocharacters on free groups},
     journal = {Izvestiya. Mathematics },
     pages = {119--141},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a5/}
}
TY  - JOUR
AU  - V. A. Faiziev
TI  - Pseudocharacters on free groups
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 119
EP  - 141
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a5/
LA  - en
ID  - IM2_1995_44_1_a5
ER  - 
%0 Journal Article
%A V. A. Faiziev
%T Pseudocharacters on free groups
%J Izvestiya. Mathematics 
%D 1995
%P 119-141
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a5/
%G en
%F IM2_1995_44_1_a5
V. A. Faiziev. Pseudocharacters on free groups. Izvestiya. Mathematics , Tome 44 (1995) no. 1, pp. 119-141. http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a5/

[1] S. Ulam, Nereshennye matematicheskie zadachi, Nauka, M., 1964 | Zbl

[2] D. H. Hyers, “On the stability of the linear functional equations”, Proc. Nat. Acad. Sci. USA., 27:2 (1941), 222–224 | DOI | MR | Zbl

[3] D. H. Hyers, S. M. Ulam, “On approximate isometry”, Bull. Amer. Math. Soc., 1945, no. 51, 288–292 | DOI | MR | Zbl

[4] D. H. Hyers, S. M. Ulam, “Aproximate isometryof the Space of continuous functions”, Ann. of Math., 48:2 (1947), 285–289 | DOI | MR | Zbl

[5] J. Baker, J. Lawrence, F. Zorzitto, “The Stability of equation $f(x+y)=f(x)\cdot f(y)$”, Proc. Amer. Math. Soc., 74:2 (1979), 242–246 | DOI | MR | Zbl

[6] A. I. Shtern, “Ob ustoichivosti gomomorfizmov v gruppu $R^*$”, Vestn. MGU. Matem. mekh., 1982, no. 3, 29–32 | MR | Zbl

[7] J. Lawrence, “The stability of multiplicative semigroup homomorfisms to real normed algebras”, Aequat. Math., 28:1–2 (1985), 94–101 | DOI | MR | Zbl

[8] K. Grove, H. Karcher, E. A. Roh, “Jacobi fields and Finsler metrics on compact Lie groups with an application to differentiable pinching problems”, Math. Ann., 211:1 (1974), 7–21 | DOI | MR | Zbl

[9] P. Harpe, M. Karoubi, “Representations approchees d'un groupe dans une algebre de Banach”, Manuscripta Math., 22:3 (1977), 293–310 | DOI | MR | Zbl

[10] D. Kazhdan, “On $\varepsilon$-representations”, Israel Journ. Math., 43:4 (1982), 315–323 | DOI | MR | Zbl

[11] D. Cencer, “The stability problem for trasformation of the circle”, Proc. Roy. Soc. Edinburg A, 1979, no. 84, 279–281

[12] V. A. Faiziev, “Psevdokharaktery na svobodnykh gruppakh i nekotorykh gruppovykh konstruktsiyakh”, UMN, 43:5 (1988), 225–226 | MR

[13] A. I. Shtern, “Psevdokharakter, opredelennyi simvolom Rademakhera”, UMN, 45:3 (1990), 197–198 | MR | Zbl

[14] A. I. Shtern, “Kvazipredstavleniya i psevdopredstavleniya”, Funktsion. analiz i ego prilozh., 25:2 (1991), 70–73 | MR | Zbl

[15] V. A. Faiziev, “Psevdokharaktery na svobodnykh proizvedeniyakh polugrupp”, Funktsion. analiz i ego prilozh., 21:1 (1987), 86–87 | MR | Zbl

[16] V. A. Faiziev, “Ob ustoichivosti odnogo funktsionalnogo uravneniya na gruppakh”, UMN, 48:1 (1993), 193–194 | MR | Zbl

[17] V. A. Faiziev, “O prostranstvakh psevdokharakterov svobodnogo proizvedeniya polugrupp”, Matem. zametki, 52:6 (1992), 119–130 | MR | Zbl

[18] V. A. Faiziev, “Psevdokharaktery na polupryamykh proizvedeniyakh polugrupp”, Matem. zametki, 53:2 (1993), 132–139 | MR | Zbl

[19] V. A. Faiziev, “Psevdokharaktery na gruppe $SL(2,Z)$”, Funktsion. analiz i ego prilozh., 26:4 (1992), 77–79 | MR | Zbl

[20] R. Lindon, P. Shupp, Kombinatornaya teoriya grupp, Mir, M., 1980 | MR