Asymptotic of a solution of the Neumann problem at a point of tangency of smooth components of the boundary of the domain
Izvestiya. Mathematics , Tome 44 (1995) no. 1, pp. 91-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotics of the solution of the Neumann problem is studied for a second-order elliptic equation near a point of tangency of two surfaces forming the boundary of a domain in $\mathbf R^n$, $n\geqslant 3$. In accordance with the procedure of investigating problems in thin domains, the resulting equation is found on the hyperplane $\mathbf R^{n-1}$, the power solutions of which occur in the asymptotics. The justification of the expansion first found formally is based on a priori estimates of solutions in spaces with weighted norms, reduction of the problem to the resulting equation by means of integration, and application of a familiar theorem regarding the asymptotics of the latter.
@article{IM2_1995_44_1_a4,
     author = {S. A. Nazarov},
     title = {Asymptotic of a solution of the {Neumann} problem at a point of tangency of smooth components of the boundary of the domain},
     journal = {Izvestiya. Mathematics },
     pages = {91--118},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a4/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Asymptotic of a solution of the Neumann problem at a point of tangency of smooth components of the boundary of the domain
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 91
EP  - 118
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a4/
LA  - en
ID  - IM2_1995_44_1_a4
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Asymptotic of a solution of the Neumann problem at a point of tangency of smooth components of the boundary of the domain
%J Izvestiya. Mathematics 
%D 1995
%P 91-118
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a4/
%G en
%F IM2_1995_44_1_a4
S. A. Nazarov. Asymptotic of a solution of the Neumann problem at a point of tangency of smooth components of the boundary of the domain. Izvestiya. Mathematics , Tome 44 (1995) no. 1, pp. 91-118. http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a4/

[1] V. A. Kondratev, “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. Mosk. matem. ob-va, 16 (1967), 209–292

[2] V. G. Mazya, B. A. Plamenevskii, “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblasti s konicheskimi tochkami”, Math. Nachr., 76 (1976), 29–60 | DOI

[3] V. A. Kondratev, “Osobennosti reshenii zadachi Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka v okrestnosti rebra”, Differents. uravn., 13:11 (1977), 2026–2032 | MR

[4] V. G. Maz'ya, J. Rossmann, “Über die Asymptotik der Losungen elliptischer Randwertaufgaben in der Umgebung von Kanten”, Math. Nachr., 138 (1988), 27–53 | DOI | MR

[5] V. G. Mazya, B. A. Plamenevskii, “Ob asimptotike resheniya zadachi Dirikhle vblizi izolirovannoi osobennosti granitsy”, Vest. LGU, 1977, no. 13, 60–66

[6] B. A. Plamenevskii, “Ob asimptoticheskom povedenii reshenii kvaziellipticheskikh uravnenii s operatornymi koeffitsientami”, Izv. AN SSSR. Ser. matem., 37:6 (1973), 1332–1375 | MR | Zbl

[7] G. M. Verzhbinskii, V. T. Mazya, “Asimptoticheskoe povedenie reshenii ellipticheskikh uravnenii vtorogo poryadka vblizi granitsy, 1”, Sib. matem. zhurn., 12:6 (1971), 1217–1249 ; “2”, 13:6 (1972), 1239–1271 | Zbl | MR | Zbl

[8] A. B. Movchan, S. A. Nazarov, “Asimptotika napryazhenno-deformirovannogo sostoyaniya vblizi prostranstvennogo pikoobraznogo vklyucheniya”, Mekhanika kompozitnykh materialov, 1985, no. 5, 792–800

[9] A. B. Movchan, S. A. Nazarov, “Napryazhenno-deformirovannoe sostoyanie vblizi vershiny trekhmernogo absolyutno zhestkogo pika, vnedrennogo v uprugoe telo”, Prikl. mekhanika, 25:12 (1989), 10–19 | MR | Zbl

[10] V. T. Mazya, S. A. Nazarov, B. A. Plamenevskii, “Zadacha Dirikhle v oblastyakh s tonkimi peremychkami”, Sib. matem. zhurn., 25:2 (1984), 161–179 | MR

[11] A. D. Goldenveizer, “Postroenie priblizhennoi teorii obolochek pri pomoschi asimptoticheskogo integrirovaniya uravnenii teorii uprugosti”, Prikl. matem. i mekhanika, 27:6 (1963), 1057–1074

[12] M. G. Dzhavadov, “Asimptotika reshenii kraevoi zadachi dlya ellipticheskogo uravneniya v tonkikh oblastyakh”, Differents. uravn., 4:10 (1968), 1901–1909 | Zbl

[13] S. A. Nazarov, “Struktura reshenii ellipticheskikh kraevykh zadach v tonkikh oblastyakh”, Vest. LGU, 7 (1982), 65–68 | MR | Zbl

[14] E. Sanchez-Palencia, “Passage a la limite de l'elasticite tridimensionelle a la theorie asymptotique des coques minces”, C.R. Acad. Sci. Paris. Ser. 2, 311 (1990), 909–916 | MR | Zbl

[15] S. A. Nazarov, B. A. Plamenevskii, Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, 336, Nauka, M., 1991

[16] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973, 408 pp. | MR

[17] M. S. Agranovich, M. M. Vishik, “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, UMN, 19:3 (1964), 53–161

[18] Zh.-L. Lions, E. Madzhenes, Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971, 372 pp.