Geometric theory of hinged devices
Izvestiya. Mathematics , Tome 44 (1995) no. 1, pp. 43-68

Voir la notice de l'article provenant de la source Math-Net.Ru

This article contains results connected with engineering mechanics. Among them are: a theorem “on the nonuniqueness of a statically determinable truss”, a classification of hinged mechanisms and their schemes, and an example of a hinged mechanism with variable number of degrees of freedom. The study of general geometric properties is based on the concept, introduced here, of an abstract hinged device in $\mathbf R^d$. This concept formalizes a well-known approach in the theory of mechanisms. The formalization gives rise to a number of interesting mathematical questions.
@article{IM2_1995_44_1_a2,
     author = {M. D. Kovalev},
     title = {Geometric theory of hinged devices},
     journal = {Izvestiya. Mathematics },
     pages = {43--68},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a2/}
}
TY  - JOUR
AU  - M. D. Kovalev
TI  - Geometric theory of hinged devices
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 43
EP  - 68
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a2/
LA  - en
ID  - IM2_1995_44_1_a2
ER  - 
%0 Journal Article
%A M. D. Kovalev
%T Geometric theory of hinged devices
%J Izvestiya. Mathematics 
%D 1995
%P 43-68
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a2/
%G en
%F IM2_1995_44_1_a2
M. D. Kovalev. Geometric theory of hinged devices. Izvestiya. Mathematics , Tome 44 (1995) no. 1, pp. 43-68. http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a2/