General boundary value problem for systems elliptic in the sense of Douglis--Nirenberg in~domains with smooth boundary
Izvestiya. Mathematics , Tome 44 (1995) no. 1, pp. 21-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

A study is made of a general boundary value problem for systems elliptic in the Douglis–Nirenberg sense with constant real coefficients in domains with smooth boundary. A representation is obtained for regular solutions of these systems by means of solutions of (canonical) elliptic systems, and a formula is given for the index of the problem. Certain boundary value problems for the Stokes system are studied as an illustration.
@article{IM2_1995_44_1_a1,
     author = {N. A. Zhura},
     title = {General boundary value problem for systems elliptic in the sense of {Douglis--Nirenberg} in~domains with smooth boundary},
     journal = {Izvestiya. Mathematics },
     pages = {21--42},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a1/}
}
TY  - JOUR
AU  - N. A. Zhura
TI  - General boundary value problem for systems elliptic in the sense of Douglis--Nirenberg in~domains with smooth boundary
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 21
EP  - 42
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a1/
LA  - en
ID  - IM2_1995_44_1_a1
ER  - 
%0 Journal Article
%A N. A. Zhura
%T General boundary value problem for systems elliptic in the sense of Douglis--Nirenberg in~domains with smooth boundary
%J Izvestiya. Mathematics 
%D 1995
%P 21-42
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a1/
%G en
%F IM2_1995_44_1_a1
N. A. Zhura. General boundary value problem for systems elliptic in the sense of Douglis--Nirenberg in~domains with smooth boundary. Izvestiya. Mathematics , Tome 44 (1995) no. 1, pp. 21-42. http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a1/

[1] A. Douglis, L. Nirenberg, “Interior estimates for elliptic systems of partial differential equations”, Comm. Pure Appl. Math., 8:4 (1955), 503–538 | DOI | MR | Zbl

[2] B. A. Solonnikov, “Ob obschikh kraevykh zadachakh dlya sistem, ellipticheskikh v smysle A. Duglisa–L. Nirenberga”, Izv. AN SSSR. Ser. matem., 28:3 (1964), 665–706 | MR

[3] I. G. Petrovskii, “Sur l'analyticité des solutions des systemes d'equations differentielles”, Matem. sb., 5(47):1 (1939), 3–70

[4] A. V. Bitsadze, Kraevye zadachi dlya ellipticheskikh uravnenii vtorogo poryadka, Nauka, M., 1966, 203 pp.

[5] A. P. Soldatov, Odnomernye singulyarnye integralnye operatory i kraevye zadachi teorii funktsii, Vysshaya shkola, M., 1990, 208 pp. | MR

[6] A. Douglis, “A function theoretic approach to elliptic systems of equations in two variables”, Comm. Pure Appl. Math., 1953, no. 6, 259–289 | DOI | MR | Zbl

[7] B. V. Boyarskii, “Teoriya obobschennogo analiticheskogo vektora”, Annales Polon. Math., 17:3 (1966), 281–320

[8] A. V. Soldatov, “Analog integrala tipa Koshi dlya ellipticheskikh sistem”, DAN SSSR, 289:4 (1986), 800–804 | MR

[9] A. P. Soldatov, “Obschaya kraevaya zadacha teorii funktsii”, DAN SSSR, 299:4 (1988), 825–828 | MR | Zbl

[10] A. P. Soldatov, “Ellipticheskie sistemy vysokogo poryadka”, Differents. uravn., 25:1 (1989), 136–144 | MR | Zbl

[11] N. I. Muskhelishvili, Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR | Zbl

[12] N. A. Zhura, “Nelokalnaya kraevaya zadacha dlya statsionarnoi linearizovannoi dvumernoi sistemy uravnenii Nave–Stoksa”, DAN SSSR, 311:3 (1990), 524–527 | MR | Zbl

[13] A. V. Bitsadze, “Ob odnoi sisteme lineinykh uravnenii s chastnymi proizvodnymi”, DAN SSSR, 204:5 (1972), 1031–1033 | Zbl

[14] B. C. Vinogradov, “Ob odnom novom metode resheniya kraevoi zadachi dlya linearizovannoi sistemy uravnenii Nave–Stoksa v sluchae ploskosti”, DAN SSSR, 145:6 (1962), 1202–1204 | MR | Zbl

[15] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhigaemoi zhidkosti, Nauka, M., 1970

[16] V. A. Kondratev, O. A. Oleinik, “Kraevye zadachi dlya uravnenii s chastnymi proizvodnymi v negladkikh oblastyakh”, UMN, 38:2 (1983), 3–76 | MR

[17] N. E. Konin, Kibel, N. V. Roze, Teoreticheskaya gidromekhanika, t. 2, Fizmatgiz, M., 1963, 727 pp.