On the number of triangulation simplexes
Izvestiya. Mathematics, Tome 44 (1995) no. 1, pp. 1-20 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider generating functions for the number of triangulation simplexes. We show that the binomial generating function is multiplicative. Certain exponential generating functions turn out to be solutions of evolutionary differential equations. We get congruences for the number of internal simplexes of certain triangulations generalizing the Staudt congruences for Bernoulli numbers.
@article{IM2_1995_44_1_a0,
     author = {M. Kh. Gizatullin},
     title = {On~the number of triangulation simplexes},
     journal = {Izvestiya. Mathematics},
     pages = {1--20},
     year = {1995},
     volume = {44},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a0/}
}
TY  - JOUR
AU  - M. Kh. Gizatullin
TI  - On the number of triangulation simplexes
JO  - Izvestiya. Mathematics
PY  - 1995
SP  - 1
EP  - 20
VL  - 44
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a0/
LA  - en
ID  - IM2_1995_44_1_a0
ER  - 
%0 Journal Article
%A M. Kh. Gizatullin
%T On the number of triangulation simplexes
%J Izvestiya. Mathematics
%D 1995
%P 1-20
%V 44
%N 1
%U http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a0/
%G en
%F IM2_1995_44_1_a0
M. Kh. Gizatullin. On the number of triangulation simplexes. Izvestiya. Mathematics, Tome 44 (1995) no. 1, pp. 1-20. http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a0/

[1] Aleksandrov P. S., Kombinatornaya topologiya, GITTL, M.–L., 1947 | MR

[2] Aleksandrov P. S., Vvedenie v gomologicheskuyu teoriyu razmernosti i obschuyu kombinatornuyu topologiyu, Nauka, M., 1975 | MR

[3] Rokhlin V. A., Fuks D. B., Nachalnyi kurs topologii, geometricheskie glavy, Nauka, M., 1977 | MR | Zbl

[4] Gelfond A. O., Ischislenie konechnykh raznostei, Nauka, M., 1967 | MR