Intermediate Lie algebras and their finite finite-dimensional representations
Izvestiya. Mathematics , Tome 43 (1994) no. 3, pp. 559-579.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method is exhibited for separating multiple points of the spectrum in the reductions $A_n\downarrow A_{n-1}$ and $C_n\downarrow C_{n-1}$ by introducing nonsemisimple intermediate subalgebras. The category of modules over these intermediate subalgebras is examined; the modules play the role of modules with highest weight.
@article{IM2_1994_43_3_a8,
     author = {V. V. Shtepin},
     title = {Intermediate {Lie} algebras and their finite finite-dimensional representations},
     journal = {Izvestiya. Mathematics },
     pages = {559--579},
     publisher = {mathdoc},
     volume = {43},
     number = {3},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1994_43_3_a8/}
}
TY  - JOUR
AU  - V. V. Shtepin
TI  - Intermediate Lie algebras and their finite finite-dimensional representations
JO  - Izvestiya. Mathematics 
PY  - 1994
SP  - 559
EP  - 579
VL  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1994_43_3_a8/
LA  - en
ID  - IM2_1994_43_3_a8
ER  - 
%0 Journal Article
%A V. V. Shtepin
%T Intermediate Lie algebras and their finite finite-dimensional representations
%J Izvestiya. Mathematics 
%D 1994
%P 559-579
%V 43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1994_43_3_a8/
%G en
%F IM2_1994_43_3_a8
V. V. Shtepin. Intermediate Lie algebras and their finite finite-dimensional representations. Izvestiya. Mathematics , Tome 43 (1994) no. 3, pp. 559-579. http://geodesic.mathdoc.fr/item/IM2_1994_43_3_a8/

[1] Zhelobenko D. P., Kompaktnye gruppy Li i ikh predstavleniya, Nauka, M., 1970 | MR | Zbl

[2] Shtepin V. V., “Razdelenie kratnykh tochek spektra v reduktsii $\operatorname{sp}(2n)\downarrow\operatorname{sp}(2n-2)$”, Funkts. analiz i ego prilozh., 20:4 (1986), 93–95 | MR | Zbl

[3] Bincer A. M., “Mickelsson lowering operators for the symplectic group”, Lect. Notes Phys., 135, 1980, 459–463 | MR

[4] Zhelobenko D. P., “Analog bazisa Gelfanda–Tsetlina dlya simplekticheskikh algebr Li”, UMN, 42:6 (1987), 193–194 | MR

[5] Zhelobenko D. P., “Klassicheskie gruppy. Spektralnyi analiz konechnomernykh predstavlenii”, UMN, 17:1 (1962), 27–119 | MR

[6] Veil G., “Teoriya predstavlenii nepreryvnykh poluprostykh grupp pri pomoschi lineinykh preobrazovanii”, Matematika. Teoreticheskaya fizika, Izbr. tr., Nauka, M., 1984, 100–197

[7] Kirillov A. A., Elementy teorii predstavlenii, Nauka, M., 1978 | MR | Zbl

[8] Jantzen J. G., “Moduln mit einem hochsten Gewicht”, Lect. Notes Math., 750, 1979, 1–182 | MR

[9] Cepp Zh. P., Gruppy i algebry Li, Mir, M., 1969

[10] Diksme Zh., Universalnye obertyvayuschie algebry, Mir, M., 1978 | MR

[11] Gelfand I. M., Tsetlin M. L., “Konechnomernye predstavleniya gruppy unimodulyarnykh matrits”, DAN SSSR, 71:5 (1950), 825–828 | MR

[12] Gelfand I. M., Tsetlin M. L., “Konechnomernye predstavleniya gruppy ortogonalnykh matrits”, DAN SSSR, 71:6 (1950), 1017–1020

[13] Shtepin V. V., “Ob odnom klasse konechnomernykh $\operatorname{sp}(2n-1)$-modulei”, UMN, 41:3 (1986), 207–208 | MR

[14] Shtepin V. V., Spektralnyi analiz konechnomernykh predstavlenii simplekticheskikh grupp i algebr Li, Dis. $\dots$ kand. fiz.-mat. nauk, MGU, M., 1987

[15] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1985 | MR | Zbl