Intermediate Lie algebras and their finite finite-dimensional representations
Izvestiya. Mathematics , Tome 43 (1994) no. 3, pp. 559-579

Voir la notice de l'article provenant de la source Math-Net.Ru

A method is exhibited for separating multiple points of the spectrum in the reductions $A_n\downarrow A_{n-1}$ and $C_n\downarrow C_{n-1}$ by introducing nonsemisimple intermediate subalgebras. The category of modules over these intermediate subalgebras is examined; the modules play the role of modules with highest weight.
@article{IM2_1994_43_3_a8,
     author = {V. V. Shtepin},
     title = {Intermediate {Lie} algebras and their finite finite-dimensional representations},
     journal = {Izvestiya. Mathematics },
     pages = {559--579},
     publisher = {mathdoc},
     volume = {43},
     number = {3},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1994_43_3_a8/}
}
TY  - JOUR
AU  - V. V. Shtepin
TI  - Intermediate Lie algebras and their finite finite-dimensional representations
JO  - Izvestiya. Mathematics 
PY  - 1994
SP  - 559
EP  - 579
VL  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1994_43_3_a8/
LA  - en
ID  - IM2_1994_43_3_a8
ER  - 
%0 Journal Article
%A V. V. Shtepin
%T Intermediate Lie algebras and their finite finite-dimensional representations
%J Izvestiya. Mathematics 
%D 1994
%P 559-579
%V 43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1994_43_3_a8/
%G en
%F IM2_1994_43_3_a8
V. V. Shtepin. Intermediate Lie algebras and their finite finite-dimensional representations. Izvestiya. Mathematics , Tome 43 (1994) no. 3, pp. 559-579. http://geodesic.mathdoc.fr/item/IM2_1994_43_3_a8/