The degree of the top Segre class of the standard vector bundle on the Hilbert scheme $\operatorname{Hilb}^4S$ of an algebraic surface~$S$
Izvestiya. Mathematics , Tome 43 (1994) no. 3, pp. 493-516.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we compute the degree of the top Segre class $s_8(\mathscr E_D^4)$ of the standard vector bundle $\mathscr E_D^4=q_{\ast}p^{\ast}\mathscr O_s(D)$ on the Hilbert scheme $\operatorname{Hilb}^4S$ of an algebraic surface $S$, where $D$ is a divisor on $S$ and $S\stackrel{p}{\longleftarrow}Z_4\stackrel{q}{\longrightarrow}\operatorname{Hilb}^4S$ are the natural projections of the universal cycle $Z_4\subset S\times\operatorname{Hilb}^4S$. This degree is a polynomial with rational coefficients in invariants $x$, $y$, $z$, $w$ of the pair $(S,\mathscr O_S(D))$, where $x=(D^2)$, $y=(D\cdot K_S)$, $z=s_2(S)$, $w=(K^2_S)$.
@article{IM2_1994_43_3_a5,
     author = {T. L. Troshina},
     title = {The degree of the top {Segre} class of the standard vector bundle on the {Hilbert} scheme $\operatorname{Hilb}^4S$ of an algebraic surface~$S$},
     journal = {Izvestiya. Mathematics },
     pages = {493--516},
     publisher = {mathdoc},
     volume = {43},
     number = {3},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1994_43_3_a5/}
}
TY  - JOUR
AU  - T. L. Troshina
TI  - The degree of the top Segre class of the standard vector bundle on the Hilbert scheme $\operatorname{Hilb}^4S$ of an algebraic surface~$S$
JO  - Izvestiya. Mathematics 
PY  - 1994
SP  - 493
EP  - 516
VL  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1994_43_3_a5/
LA  - en
ID  - IM2_1994_43_3_a5
ER  - 
%0 Journal Article
%A T. L. Troshina
%T The degree of the top Segre class of the standard vector bundle on the Hilbert scheme $\operatorname{Hilb}^4S$ of an algebraic surface~$S$
%J Izvestiya. Mathematics 
%D 1994
%P 493-516
%V 43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1994_43_3_a5/
%G en
%F IM2_1994_43_3_a5
T. L. Troshina. The degree of the top Segre class of the standard vector bundle on the Hilbert scheme $\operatorname{Hilb}^4S$ of an algebraic surface~$S$. Izvestiya. Mathematics , Tome 43 (1994) no. 3, pp. 493-516. http://geodesic.mathdoc.fr/item/IM2_1994_43_3_a5/

[1] Beltrametti M., Sommese A. J., “Zero cycles and $k$-th order embeddings of smooth projective surfaces”, Symposia Mathematica, XXXII (1989), 33–48 | MR

[2] Fulton W., Intersection theory, Springer-Verlag, N.Y., 1984 | MR | Zbl

[3] Hartshorne R., Algebraic geometry, Springer-Verlag, N.Y., 1977 | MR | Zbl

[4] Pidstrigach V. Ya., Tyurin A. N., “Invarianty gladkoi struktury algebraicheskoi poverkhnosti, zadavaemye operatorom Diraka”, Izv. RAN. Ser. matem., 56:2 (1992), 279–371 | MR | Zbl

[5] Tikhomirov A. S., “Standard bundles on a Hilbert scheme of points on a surface”, Proceedings of the algebraic geometry conference, Yaroslavl, 1992

[6] Tyurin A. N., “O periodakh kvadratichnykh differentsialov”, UMN, XXXIII:6 (1978), 149–195 | MR

[7] Shafarevich I. R., Osnovy algebraicheskoi geometrii, Nauka, M., 1972 | MR | Zbl