On quasiperiodic solutions of the matrix Riccati equation
Izvestiya. Mathematics , Tome 43 (1994) no. 3, pp. 455-470.

Voir la notice de l'article provenant de la source Math-Net.Ru

The matrix Riccati equation \begin{equation} \dot X+Xf(t)X+(A_0+A(t))X+\lambda l(t)=0 \tag{1} \end{equation} is considered, where $X$ is an unknown vector, $A_0$ is a constant diagonal matrix whose elements are pairwise distinct imaginary numbers, the coefficients $f(t)$, $A(t)$, and $l(t)$ are matrices whose elements are Arnold'd functions, and $\lambda$ is a small complex parameter. Newton's method is used to prove that (1) has quasiperiodic solutions with the exception of finitely many rays. By using the quasiperiodic solutions obtained it is proved that, with the exception of finitely many rays, the system of differential equations $\dot X=(P_0+\lambda P(t))X$ is reducible, where $P(t)$ is a matrix whose elements are Arnol'd functions, and $\lambda$ is a small complex parameter.
@article{IM2_1994_43_3_a3,
     author = {V. S. Pronkin},
     title = {On quasiperiodic solutions of the matrix {Riccati} equation},
     journal = {Izvestiya. Mathematics },
     pages = {455--470},
     publisher = {mathdoc},
     volume = {43},
     number = {3},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1994_43_3_a3/}
}
TY  - JOUR
AU  - V. S. Pronkin
TI  - On quasiperiodic solutions of the matrix Riccati equation
JO  - Izvestiya. Mathematics 
PY  - 1994
SP  - 455
EP  - 470
VL  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1994_43_3_a3/
LA  - en
ID  - IM2_1994_43_3_a3
ER  - 
%0 Journal Article
%A V. S. Pronkin
%T On quasiperiodic solutions of the matrix Riccati equation
%J Izvestiya. Mathematics 
%D 1994
%P 455-470
%V 43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1994_43_3_a3/
%G en
%F IM2_1994_43_3_a3
V. S. Pronkin. On quasiperiodic solutions of the matrix Riccati equation. Izvestiya. Mathematics , Tome 43 (1994) no. 3, pp. 455-470. http://geodesic.mathdoc.fr/item/IM2_1994_43_3_a3/

[1] Pronkin B. C., “O suschestvovanii kvaziperiodicheskogo resheniya nelineinogo differentsialnogo uravneniya”, Differents. uravn., 28:8 (1992), 1339–1346 | MR

[2] Arnold V. I., “Malye znamenateli i problemy ustoichivosti dvizheniya v klassicheskoi i nebesnoi mekhanike”, UMN, 18:6 (1963), 91–192 | MR

[3] Blinov I. N., “Ob odnom iteratsionnom protsesse Nyutona”, Izv. AN SSSR. Ser. matem., 33:1 (1969), 3–14 | MR | Zbl

[4] Pronkin B. C., “Primenenie metoda Nyutona k odnoi zadache s malymi znamenatelyami”, Differents. uravn., 18:6 (1982), 979–986 | MR

[5] Blinov I. N., Lineinye sistemy, Dis. $\dots$ dokt. fiz.-mat. nauk, L., 1967, 260 | MR

[6] Blinov I. N., “Metod sverkhbystroi skhodimosti i privodimost pochti-periodicheskikh sistem”, Differents. uravn., 24:2 (1988), 187–199 | MR | Zbl

[7] Blinov I. N., “Pravilnost odnogo klassa lineinykh sistem s pochti-periodicheskimi koeffitsientami”, Differents. uravn., 3:9 (1967), 1461–1470 | MR | Zbl

[8] Adrianova L. Ya., “O privodimosti sistemy $n$-lineinykh differentsialnykh uravnenii s kvaziperiodicheskimi koeffitsientami”, Vest. LGU. Ser. mat.-mekh., 1962, no. 2, 14–24 | MR | Zbl

[9] Erugin N. P., Privodimye sistemy, Tr. MIAN, 13, M., L., 1946 | MR | Zbl