On~cohomology classes defined by the real points of a real algebraic $\operatorname{GM}$-surface
Izvestiya. Mathematics , Tome 43 (1994) no. 2, pp. 385-395.

Voir la notice de l'article provenant de la source Math-Net.Ru

The cohomology classes $x_i=[X_i]^*\in H^2(X(\mathbb C),\mathbb Z)$ are studied, where $X_1,\dots,X_m$ are the connected components of the set of real points $X(\mathbb R)$ of a real algebraic $\operatorname{GM}$-surface $X$ and $X(\mathbb R)=X_1\cup\dots\cup X_m$ is assumed to be orientable. The results are applied to obtain congruences for the Euler characteristic of $X(\mathbb R)$.
@article{IM2_1994_43_2_a10,
     author = {V. A. Krasnov},
     title = {On~cohomology classes defined by the real points of a real algebraic $\operatorname{GM}$-surface},
     journal = {Izvestiya. Mathematics },
     pages = {385--395},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1994_43_2_a10/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - On~cohomology classes defined by the real points of a real algebraic $\operatorname{GM}$-surface
JO  - Izvestiya. Mathematics 
PY  - 1994
SP  - 385
EP  - 395
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1994_43_2_a10/
LA  - en
ID  - IM2_1994_43_2_a10
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T On~cohomology classes defined by the real points of a real algebraic $\operatorname{GM}$-surface
%J Izvestiya. Mathematics 
%D 1994
%P 385-395
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1994_43_2_a10/
%G en
%F IM2_1994_43_2_a10
V. A. Krasnov. On~cohomology classes defined by the real points of a real algebraic $\operatorname{GM}$-surface. Izvestiya. Mathematics , Tome 43 (1994) no. 2, pp. 385-395. http://geodesic.mathdoc.fr/item/IM2_1994_43_2_a10/

[1] Nikulin V. V., “Involyutsii tselochislennykh kvadratichnykh form i ikh prilozheniya k veschestvennoi algebraicheskoi geometrii”, Izv. AN SSSR. Ser. matem., 47:1 (1983), 109–177 | MR

[2] Viro O. Ya., “Uspekhi v topologii veschestvennykh algebraicheskikh mnogoobrazii za poslednie shest let”, UMN, 41:3 (1986), 45–67 | MR | Zbl

[3] Grotendik A., O nekotorykh voprosakh gomologicheskoi algebry, IL, M., 1961

[4] Krasnov V. A., “Algebraicheskie tsikly na veschestvennom algebraicheskom GM-mnogoobrazii i ikh prilozheniya”, Izv. AN SSSR. Ser. matem., 57:4 (1993), 153–173 | MR | Zbl

[5] Krasnov V. A., “Neravenstva Garnaka–Toma dlya otobrazhenii veschestvennykh algebraicheskikh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 47:2 (1983), 268–297 | MR

[6] Halperin S., Toledo D., “Stiefel–Whitney homology classes”, Ann. Mat., 86:3 (1972), 511–525 | DOI | MR

[7] Rokhlin V. A., “Sravneniya po modulyu 16 v shestnadtsatoi probleme Gilberta”, Funkts. analiz i ego prilozh., 6:4 (1972), 58–64 ; 7:2 (1973), 91–92 | MR | Zbl | MR | Zbl

[8] Sommese A. J., “Real algebraic spaies”, Annali Scu. Norm. Sup. Pisa. Ser. 4, 4:4 (1977), 599–612 | MR | Zbl

[9] Krasnov V. A., “Orientiruemost veschestvennykh algebraicheskikh mnogoobrazii”, Konstruktivnaya algebraicheskaya geometriya, Yaroslavl, 1981, 46–57 | Zbl

[10] Arnold V. I., “O raspolozhenii ovalov veschestvennykh ploskikh algebraicheskikh krivykh, involyutsiyakh chetyrekhmernykh, gladkikh mnogoobrazii i arifmetike tselochislennykh kvadratichnykh form”, Funkts. analiz i ego prilozh., 5:3 (1971), 1–9 | MR

[11] Fidler T., “Novye sravneniya v topologii veschestvennykh ploskikh algebraicheskikh krivykh”, DAN SSSR, 270:1 (1983), 56–58 | MR