I.\,N.~Bernstein--I.\,M.~Gel'fand--S.\,I.~Gel'fand equivalence for triangulated categories generated by helixes
Izvestiya. Mathematics , Tome 43 (1994) no. 1, pp. 127-140.

Voir la notice de l'article provenant de la source Math-Net.Ru

An analogue of the Bernshtein–Gel'fand–Gel'fand equivalence is proved for triangulated categories generated by exceptional sets with special properties. The proof uses the technique of mutations and helixes.
@article{IM2_1994_43_1_a7,
     author = {A. E. Polishchuk},
     title = {I.\,N.~Bernstein--I.\,M.~Gel'fand--S.\,I.~Gel'fand equivalence for triangulated categories generated by  helixes},
     journal = {Izvestiya. Mathematics },
     pages = {127--140},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a7/}
}
TY  - JOUR
AU  - A. E. Polishchuk
TI  - I.\,N.~Bernstein--I.\,M.~Gel'fand--S.\,I.~Gel'fand equivalence for triangulated categories generated by  helixes
JO  - Izvestiya. Mathematics 
PY  - 1994
SP  - 127
EP  - 140
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a7/
LA  - en
ID  - IM2_1994_43_1_a7
ER  - 
%0 Journal Article
%A A. E. Polishchuk
%T I.\,N.~Bernstein--I.\,M.~Gel'fand--S.\,I.~Gel'fand equivalence for triangulated categories generated by  helixes
%J Izvestiya. Mathematics 
%D 1994
%P 127-140
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a7/
%G en
%F IM2_1994_43_1_a7
A. E. Polishchuk. I.\,N.~Bernstein--I.\,M.~Gel'fand--S.\,I.~Gel'fand equivalence for triangulated categories generated by  helixes. Izvestiya. Mathematics , Tome 43 (1994) no. 1, pp. 127-140. http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a7/

[1] Beilinson A. L., “Kogerentnye puchki na $\mathbf{P}^n$ i problemy lineinoi algebry”, Funkts. analiz, 12:3 (1978), 68–69 | MR | Zbl

[2] Bernshtein I. N., Gelfand I. M., Gelfand S. I., “Algebraicheskie rassloeniya na $\mathbf{P}^n$ i zadachi lineinoi algebry”, Funkts. analiz, 12:3 (1978), 66–67 | MR

[3] Bondal A. I., “Predstavleniya assotsiativnykh algebr i kogerentnye puchki”, Izv. AN SSSR. Ser. matem., 53:1 (1989), 25–44 | MR

[4] Bondal A. I., Kapranov M. M., “Osnaschennye triangulirovannye kategorii”, Matem. sb., 181:5 (1990), 669–683 | MR | Zbl

[5] Verdier J.-L., “Catégories dérivées”, Lect. Notes in Math., 569, 1977, 262–311 | MR | Zbl

[6] Gorodentsev A. L., “Perestroiki isklyuchitelnykh rassloenii na $\mathbf{P}^n$”, Izv. AN SSSR. Ser. matem., 52:1 (1988), 3–15 | MR

[7] Gorodentsev A. L., Rudakov A. N., “Exceptional vector bundles on projective spaces”, Duke. Math. J., 54:1 (1987), 115–130 | DOI | MR | Zbl

[8] Meltzer H., Generalized Bernstein–Gelfand–Gelfand functors, Preprint, 1991 | MR

[9] Happel D., “On the derived category of a finite-dimensional algebra”, Comm. Math. Helv., 62 (1987), 339–389 | DOI | MR | Zbl

[10] Hughes J., Waschbüsch J., “Trivial extensions of tilted algebras”, Proc. London. Math. Soc. (3), 46 (1983), 347–364 | DOI | MR | Zbl

[11] Bondal A. I., Polischuk A. E., “Isklyuchitelnye nabory i svyazannye s nimi assotsiativnye algebry”, Izv. RAN. Ser. matem., 57:2 (1993), 3–50 | MR | Zbl

[12] Gelfand S. I., Manin Yu. I., Metody gomologicheskoi algebry, t. 1. Vvedenie v teoriyu kogomologii i proizvodnye kategorii, Nauka, M., 1988 | MR

[13] Gelfand S. I., “Puchki na $\mathbf{P}^n$ i zadachi lineinoi algebry”, Prilozh. k russkomu izdaniyu knigi: Okonëk K., Shneider M., Shpindler X., Vektornye rassloeniya na kompleksnykh proektivnykh prostranstvakh, Mir, M., 1986 | MR

[14] Beilinson A. A., Bernstein J. N., Deligne P., Faisceaux pervers, Asterisque, 100, 1981 | MR