Theorem on the mean value of $\psi(x,\chi)$ and its applications
Izvestiya. Mathematics , Tome 43 (1994) no. 1, pp. 49-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new bound for the mean values of Chebyshev functions, taken over all Dirichlet characters, is obtained.
@article{IM2_1994_43_1_a2,
     author = {Z. Kh. Rakhmonov},
     title = {Theorem on the mean value of  $\psi(x,\chi)$ and its applications},
     journal = {Izvestiya. Mathematics },
     pages = {49--64},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a2/}
}
TY  - JOUR
AU  - Z. Kh. Rakhmonov
TI  - Theorem on the mean value of  $\psi(x,\chi)$ and its applications
JO  - Izvestiya. Mathematics 
PY  - 1994
SP  - 49
EP  - 64
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a2/
LA  - en
ID  - IM2_1994_43_1_a2
ER  - 
%0 Journal Article
%A Z. Kh. Rakhmonov
%T Theorem on the mean value of  $\psi(x,\chi)$ and its applications
%J Izvestiya. Mathematics 
%D 1994
%P 49-64
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a2/
%G en
%F IM2_1994_43_1_a2
Z. Kh. Rakhmonov. Theorem on the mean value of  $\psi(x,\chi)$ and its applications. Izvestiya. Mathematics , Tome 43 (1994) no. 1, pp. 49-64. http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a2/

[1] Montgomeri G., Multiplikativnaya teoriya chisel, Mir, M., 1974 | MR

[2] Vaughan R. C., “Mean value theorems in prime number theory”, J. London Math. Soc. (2), 10 (1975), 153–162 | DOI | MR | Zbl

[3] Rakhmonov Z. Kh., “Raspredelenie chisel Khardi–Littlvuda v arifmeticheskikh progressiyakh”, Izv. AN SSSR. Ser. matem., 53:1 (1989), 211–224 | MR | Zbl

[4] Karatsuba A. A., “Raspredelenie proizvedenii sdvinutykh prostykh chisel v arifmeticheskikh progressiyakh”, DAN SSSR, 192:4 (1970), 724–727 | Zbl

[5] Vinogradov I. M., Izbrannye trudy, AN SSSR, M., 1952 | MR | Zbl

[6] Vinogradov I. M., Osobye varianty metoda trigonometricheskikh summ, Nauka, M., 1976 | MR

[7] Linnik Yu. V., “Novoe dokazatelstvo teoremy Goldbakha–Vinogradova”, Matem. sb., 19(61):1 (1946), 3–8 | MR | Zbl

[8] Von R., Metod Khardi–Littlvuda, Mir, M., 1985 | MR

[9] Hardy G. H., Wright E. M., An introduction to the theory of numbers, Clareridon Press, Oxford, 1954 | MR | Zbl

[10] Babaev G. B., “Zamechanie k rabote Davenporta i Kheilbrona”, UMN, 13:6(84) (1958), 63–64 | MR | Zbl

[11] Rakhmonov Z. Kh., “O raspredelenii znachenii kharakterov Dirikhle i ikh prilozheniya”, Tr. mezhdunarodnoi konferentsii, posvyaschennoi 100-letiyu I. M. Vinogradova, M., 1991, 317–330

[12] Karatsuba A. A., Osnovy analiticheskoi teorii chisel, Nauka, M., 1983 | MR

[13] Mardzhanishvili K. K., “Otsenka odnoi arifmeticheskoi summy”, DAN SSSR, 22:7 (1939), 391–393

[14] Prakhar K., Raspredelenie prostykh chisel, Mir, M., 1967 | MR

[15] Weil A., “On some exponential sams”, Proc. Nat. Acad. S. USA, 34:5 (1948), 204–207 | DOI | MR | Zbl