Abelian varieties and the general Hodge conjecture
Izvestiya. Mathematics , Tome 43 (1994) no. 1, pp. 179-191.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Grothendieck version of the general Hodge conjecture is proved for certain simple complex abelian varieties of the $1^{\operatorname{st}}$ type with regard to Albert's classification and for certain abelian varieties of CM-type.
@article{IM2_1994_43_1_a10,
     author = {S. G. Tankeev},
     title = {Abelian varieties and the general {Hodge} conjecture},
     journal = {Izvestiya. Mathematics },
     pages = {179--191},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a10/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - Abelian varieties and the general Hodge conjecture
JO  - Izvestiya. Mathematics 
PY  - 1994
SP  - 179
EP  - 191
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a10/
LA  - en
ID  - IM2_1994_43_1_a10
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T Abelian varieties and the general Hodge conjecture
%J Izvestiya. Mathematics 
%D 1994
%P 179-191
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a10/
%G en
%F IM2_1994_43_1_a10
S. G. Tankeev. Abelian varieties and the general Hodge conjecture. Izvestiya. Mathematics , Tome 43 (1994) no. 1, pp. 179-191. http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a10/

[1] Dzh. Kassels, A. Frelikh (eds.), Algebraicheskaya teoriya chisel, Mir, M., 1969

[2] Burbaki N., Gruppy i algebry Li, gl. 1–3, Mir, M., 1976 ; гл. 4–6, 1972 ; гл. 7–8, 1978 | MR | Zbl

[3] Delin P., “Teoriya Khodzha, II”, Matematika, 17:5 (1973), 3–56 | MR

[4] Deligne P., “La conjecture de Weil, I”, Inst. Hautes Études Sci. Publ. Math., 43, 1974, 273–307 | MR

[5] Deligne P., “Theorie de Hodge, III”, Inst. Hautes Études Sci. Publ. Math., 44, 1974, 5–77 | MR | Zbl

[6] Grothendieck A., “Hodge's general conjecture is false for trivial reasons”, Topology, 8 (1969), 299–303 | DOI | MR | Zbl

[7] Hodge W. V. D., “The topological invariants of algebraic varieties”, Proc. Inter. Cong. Camb. Mass., v. 1, 1950, 182–192 | MR

[8] Kleiman S. L., “Algebraic cycles and the Weil conjectures”, Dix exposés sur la cohomologie des schémas, North-Holland, Amsterdam, 1968, 359–386 | MR

[9] Mumford D., “Families of abelian varieties. Algebraic groups and discontinuous subgroups”, Proc. Symp. in Pure Math., 9 (1966), 347–352 | MR

[10] Pohlmann H. J., “Algebraic cycles on abelian varieties of complex multiplication type”, Ann. Math., 88:1 (1968), 161–180 | DOI | MR | Zbl

[11] Shioda T., “What is known about the Hodge conjecture?”, Advanced studies in Pure Math., 1 (1983), 55–68 | MR | Zbl

[12] Steenbrink J. H. M., “Some remarks about the Hodge conjecture”, Lect. Notes Math., 1246, 1987, 165–175 | MR | Zbl

[13] Tankeev S. G., “Ob algebraicheskikh tsiklakh na poverkhnostyakh i abelevykh mnogoobraziyakh”, Izv. AN SSSR. Ser. matem., 45:2 (1981), 398–434 | MR | Zbl

[14] Tankeev S. G., “Ob algebraicheskikh tsiklakh na prostykh 5-mernykh abelevykh mnogoobraziyakh”, Izv. AN SSSR. Ser. matem., 45:4 (1981), 793–823 | MR

[15] Tankeev S. G., “Tsikly na prostykh abelevykh mnogoobraziyakh prostoi razmernosti”, Izv. AN SSSR. Ser. matem., 46:1 (1982), 155–170 | MR

[16] Shimura G., Vvedenie v arifmeticheskuyu teoriyu avtomorfnykh funktsii, Mir, M., 1973 | MR | Zbl